• Title/Summary/Keyword: Bernoulli principle

Search Result 112, Processing Time 0.03 seconds

변분법과 최대.최소 : 역사적 고찰

  • 한찬욱
    • Journal for History of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2004
  • In this paper we investigate the origin of the variational calculus with respect to the extremal principle. We also study the role the extremal principle has played in the development of the calculus of variations. We deal with Dido's isoperimetric problem, Maupertius's least action principle, brachistochrone problem, geodesics, Johann Bernoulli's principle of virtual work, Plateau's minimal surface and Dirichlet principle.

  • PDF

Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials

  • Nejad, Mohammad Zamani;Hadi, Amin;Farajpour, Ali
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.161-169
    • /
    • 2017
  • In this paper, using consistent couple stress theory and Hamilton's principle, the free vibration analysis of Euler-Bernoulli nano-beams made of bi-directional functionally graded materials (BDFGMs) with small scale effects are investigated. To the best of the researchers' knowledge, in the literature, there is no study carried out into consistent couple-stress theory for free vibration analysis of BDFGM nanostructures with arbitrary functions. In addition, in order to obtain small scale effects, the consistent couple-stress theory is also applied. These models can degenerate into the classical models if the material length scale parameter is taken to be zero. In this theory, the couple-tensor is skew-symmetric by adopting the skew-symmetric part of the rotation gradients as the curvature tensor. The material properties except Poisson's ratio are assumed to be graded in both axial and thickness directions, which it can vary according to an arbitrary function. The governing equations are obtained using the concept of Hamilton principle. Generalized differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the natural frequencies of BDFG nano-beam. At the end, some numerical results are presented to study the effects of material length scale parameter, and inhomogeneity constant on natural frequency.

Dynamic Modeling and Analysis of the Composite Beams with a PZT Layer (PZT층을 갖는 복합재 보의 동역학 모델링 및 해석)

  • Kim, Dae-Hwan;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.314-316
    • /
    • 2011
  • This paper develops a spectral element model for the composite beams with a surface-bonded piezoelectric layer from the governing equations of motion. The governing equations of motion are derived from Hamilton's principle by applying the Bernoulli-Euler beam theory for the bending vibration and the elementary rod theory for the longitudinal vibration of the composite beams. For the PZT layer, the Bernoulli-Euler beam theory and linear piezoelectricity theory are applied. The high accuracy of the present spectral element model is evaluated through the numerical examples by comparing with the finite element analysis results.

  • PDF

Controlled Hydrodynamic Cavitation-assisted Nanoreactor for Less Chemical-Higher Yield in Neutralization of Vegetable Oil Refining Process (Less Chemical-Higher Yield 탈산공정을 위한 수력 공동현상 유도 나노리엑터)

  • Kim, Ji-In
    • Food Science and Industry
    • /
    • v.51 no.2
    • /
    • pp.114-126
    • /
    • 2018
  • The production of high quality oil to meet new standard needs a 'next generation' innovative oil refining tool in paradigm shift. 'Nanoneutralization' using controlled hydrodynamic cavitation-assisted Nanoreactor is successfully being introduced and commercialized into edible oil industry and it plays a key driver for sustainable development of food processing. This emerging technology using bubble dynamics as a consequence of Bernoulli's principle by hydrodynamic cavitation in Venturi-designed multi-flow through cell is radically changing the conventionally chemical-oriented neutralization. Nanoneutralization derived by the creation of nanometer-sized bubbles formed through scientifically structured geometric channels under high pressure has been proven to improve mass transfer and reaction rate so substantially reduce the chemicals required for refined vegetable oil and to increase oil yield while even improving oil quality. More researches on science behind this revolutionary technology will help usto better understand the principle and process hence makes its potential applications expandable in extraction, refining and modification of fats and oils processing.

Investigation of standing wave acoustic levitation with Bernoulli principle and bolt-clamped Langevin type ultrasonic transducer (베르누이 원리와 bolt-clamped Langevin type 초음파 진동자를 이용한 정상파 음파 공중부양의 탐구)

  • Park, Mincheol;Park, Doojae;Kim, Young H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.422-427
    • /
    • 2018
  • The purpose of this study is to investigate the effect of acoustic radiation force on the standing wave acoustic levitation phenomenon, which is the levitation of small objects near the pressure node of the standing wave, using the Bernoulli principle. The source and scheme of the acoustic radiation force, which is the cause of the levitation, are conceptually explained through comparison with the graph of the acoustic radiation force versus the distance from the transducer. A series of experiments supporting this explanation was performed with a BLT(Bolt-clamped Langevin Type) ultrasonic transducer to confirm that the objects are floating near the pressure nodes and that it satisfies the condition for the standing wave formation when the object is levitating. Furthermore, the vertical alignment of floating objects, which is a characteristic of standing wave acoustic levitation phenomenon, could be explained.

Theoretical and Computational Analyses of Bernoulli Levitation Flows (베르누이 부상유동의 이론해석 및 수치해석 연구)

  • Nam, Jong Soon;Kim, Gyu Wan;Kim, Jin Hyeon;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.629-636
    • /
    • 2013
  • Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-${\omega}$ turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, workpiece diameter,and clearance gap between the workpiece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force.

A Novel Methodology of Improving Stress Prediction via Saint-Venant's Principle (생브낭의 원리를 이용한 응력해석 개선)

  • Kim, Jun-Sik;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • In this paper, a methodology is proposed to improve the stress prediction of plates via Saint Venant's principle. According to Saint Venant's principle, the stress resultants can be used to describe linear elastic problems. Many engineering problems have been analyzed by Euler-Bernoulli beam(E-B) and/or Kirchhoff-Love(K-L) plate models. These models are asymptotically correct, and therefore, their accuracy is mathematically guaranteed for thin plates or slender beams. By post-processing their solutions, one can improve the stresses and displacements via Saint Venant's principle. The improved in-plane and out-of-plane displacements are obtained by adding the perturbed deflection and integrating the transverse shear strains. The perturbed deflection is calculated by applying the equivalence of stress resultants before and after post-processing(or Saint Venant's principle). Accuracy and efficiency of the proposed methodology is verified by comparing the solutions obtained with the elasticity solutions for orthotropic beams.

Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.431-454
    • /
    • 2016
  • In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam model reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) with initial geometrical imperfection under uniformly distributed load using finite element method (FEM) is investigated. The governing equations of equilibrium are derived by the Hamilton's principle and von Karman type nonlinear strain-displacement relationships are employed. Also the influences of various loadings, amplitude of the waviness, UD, USFG, and SFG distributions of carbon nanotube (CNT) and different boundary conditions on the dimensionless transverse displacements and nonlinear frequency ratio are presented. It is seen that with increasing load, the displacement of USFG beam under force loads is more than for the other states. Moreover it can be seen that the nonlinear to linear natural frequency ratio decreases with increasing aspect ratio (h/L) for UD, USFG and SFG beam. Also, it is shown that at the specified value of (h/L), the natural frequency ratio increases with the increasing the values amplitude of waviness while the dimensionless nonlinear to linear maximum deflection decreases. Moreover, with considering the amplitude of waviness, the stiffness of Euler-Bernoulli beam model reinforced by FG-CNT increases. It is concluded that the R parameter increases with increasing of volume fraction while the rate of this parameter decreases. Thus one can be obtained the optimum value of FG-CNT volume fraction to prevent from resonance phenomenon.

Free vibration of functionally graded thin beams made of saturated porous materials

  • Galeban, M.R.;Mojahedin, A.;Taghavi, Y.;Jabbari, M.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.999-1016
    • /
    • 2016
  • This study presents free vibration of beam made of porous material. The mechanical properties of the beam is variable in the thickness direction and the beam is investigated in three situations: poro/nonlinear nonsymmetric distribution, poro/nonlinear symmetric distribution, and poro/monotonous distribution. First, the governing equations of porous beam are derived using principle of virtual work based on Euler-Bernoulli theory. Then, the effect of pores compressibility on natural frequencies of the beam is studied by considering clamped-clamped, clamped-free and hinged-hinged boundary conditions. Moreover, the results are compared with homogeneous beam with the same boundary conditions. Finally, the effects of poroelastic parameters such as pores compressibility, coefficients of porosity and mass on natural frequencies has been considered separately and simultaneously.

On the dynamics of rotating, tapered, visco-elastic beams with a heavy tip mass

  • Zeren, Serkan;Gurgoze, Metin
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.69-93
    • /
    • 2013
  • The present study deals with the dynamics of the flapwise (out-of-plane) vibrations of a rotating, internally damped (Kelvin-Voigt model) tapered Bernoulli-Euler beam carrying a heavy tip mass. The centroid of the tip mass is offset from the free end of the beam and is located along its extended axis. The equation of motion and the corresponding boundary conditions are derived via the Hamilton's Principle, leading to a differential eigenvalue problem. Afterwards, this eigenvalue problem is solved by using Frobenius Method of solution in power series. The resulting characteristic equation is then solved numerically. The numerical results are tabulated for a variety of nondimensional rotational speed, tip mass, tip mass offset, mass moment of inertia, internal damping parameter, hub radius and taper ratio. These are compared with the results of a conventional finite element modeling as well, and excellent agreement is obtained.