• Title/Summary/Keyword: Bi-directional reasoning

Search Result 3, Processing Time 0.019 seconds

Object Recognition for Mobile Robot using Context-based Bi-directional Reasoning (상황 정보 기반 양방향 추론 방법을 이용한 이동 로봇의 물체 인식)

  • Lim, G.H.;Ryu, G.G.;Suh, I.H.;Kim, J.B.;Zhang, G.X.;Kang, J.H.;Park, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.6-8
    • /
    • 2007
  • In this paper, We propose reasoning system for object recognition and space classification using not only visual features but also contextual information. It is necessary to perceive object and classify space in real environments for mobile robot. especially vision based. Several visual features such as texture, SIFT. color are used for object recognition. Because of sensor uncertainty and object occlusion. there are many difficulties in vision-based perception. To show the validities of our reasoning system. experimental results will be illustrated. where object and space are inferred by bi -directional rules even with partial and uncertain information. And the system is combined with top-down and bottom-up approach.

  • PDF

Robot Knowledge Framework of a Mobile Robot for Object Recognition and Navigation (이동 로봇의 물체 인식과 주행을 위한 로봇 지식 체계)

  • Lim, Gi-Hyun;Suh, Il-Hong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.6
    • /
    • pp.19-29
    • /
    • 2007
  • This paper introduces a robot knowledge framework which is represented with multiple classes, levels and layers to implement robot intelligence at real environment for mobile robot. Our root knowledge framework consists of four classes of knowledge (KClass), axioms, rules, a hierarchy of three knowledge levels (KLevel) and three ontology layers (OLayer). Four KClasses including perception, model, activity and context class. One type of rules are used in a way of unidirectional reasoning. And, the other types of rules are used in a way of bi-directional reasoning. The robot knowledge framework enable a robot to integrate robot knowledge from levels of its own sensor data and primitive behaviors to levels of symbolic data and contextual information regardless of class of knowledge. With the integrated knowledge, a robot can have any queries not only through unidirectional reasoning between two adjacent layers but also through bidirectional reasoning among several layers even with uncertain and partial information. To verify our robot knowledge framework, several experiments are successfully performed for object recognition and navigation.

Target Advertisement Service using a Viewer's Profile Reasoning (시청자 프로파일 추론 기법을 이용한 표적 광고 서비스)

  • Kim Munjo;Im Jeongyeon;Kang Sanggil;Kim Munchrul;Kang Kyungok
    • Journal of Broadcast Engineering
    • /
    • v.10 no.1 s.26
    • /
    • pp.43-56
    • /
    • 2005
  • In the existing broadcasting environment, it is not easy to serve the bi-directional service between a broadcasting server and a TV audience. In the uni-directional broadcasting environments, almost TV programs are scheduled depending on the viewers' popular watching time, and the advertisement contents in these TV programs are mainly arranged by the popularity and the ages of the audience. The audiences make an effort to sort and select their favorite programs. However, the advertisement programs which support the TV program the audience want are not served to the appropriate audiences efficiently. This randomly provided advertisement contents can occur to the audiences' indifference and avoidance. In this paper, we propose the target advertisement service for the appropriate distribution of the advertisement contents. The proposed target advertisement service estimates the audience's profile without any issuing the private information and provides the target-advertised contents by using his/her estimated profile. For the experimental results, we used the real audiences' TV usage history such as the ages, fonder and time of the programs from AC Neilson Korea. And we show the accuracy of the proposed target advertisement service algorithm. NDS (Normalized Distance Sum) and the Vector correlation method, and implementation of our target advertisement service system.