• Title/Summary/Keyword: Biaxial System

Search Result 79, Processing Time 0.036 seconds

Development of Ship Plate Member Design System Reinforced by Doubler Plate Subjected to Biaxial In-plane Compressive Load (양축 면내 압축하중 하의 이중판보강 선박판부재의 설계시스템 구축)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.294-302
    • /
    • 2016
  • Because of the importance of steel material saving and rational ship structural design due to the rapid increase in steel prices, a ship structural design system was developed for plate members reinforced by doubler plates subjected to biaxial in-plane compressive loads. This paper mainly emphasizes the design system improvement and upgrade according to the change in the in-plane loading condition of the doubler plate from the single load discussed in a previous paper to the biaxial in-plane compressive load discussed in this paper. A direct design process by a structural designer was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. As the second stage of preliminary steps of doubler design system development, design formulas subjected to these biaxial loads used in the doubler plate design system were suggested. Based on the introduction of influence coefficients $K_t_c$, $K_t_d$, $K_b_d$ and $K_a_d$ based on the variations in the doubler length, breadth, doubler thickness, and average corrosion thickness of the main plate reinforced by the doubler plate, respectively, the design formulas for the equivalent plate thickness of the main plate reinforced by the doubler plate were also developed, and a hybrid design system using these formulas was suggested for the doubler plate of a ship structure subjected to a biaxial in-plane compressive load. Using this developed design system for a main plate reinforced by a doubler plate was expected to result in a more rational reinforced doubler plate design considering the efficient reinforcement of ship plate members subjected to these biaxial loads. Additionally, a more detail structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a plate member reinforced by a doubler plate.

Evaluation of The Nonlinear Seismic Behavior of a Biaxial Hollow Slab (2방향 중공슬래브 구조시스템의 비선형 지진거동 평가)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Park, Hyun-Jae;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, there has been an increased interest in the noise isolation capacity of floor slabs, and thus an increase of slab thickness is required. In addition, long span floor systems are frequently used for efficient space use of building structures. In order to satisfy these requirements, a biaxial hollow slab system has been developed. To verify the structural capacity of a biaxial hollow slab system, safety verification against earthquake loads is essential. Therefore, the seismic behavior of a biaxial hollow slab system has been investigated using material nonlinear time history analyses. For efficient time history analyses, the equivalent plate element model previously proposed was used and the seismic capacity of the example structure having a biaxial hollow slab system has been evaluated using the nonlinear finite element model developed by the equivalent frame method. Based on analytical results, it has been shown that the seismic capacity of a biaxial hollow slab system is not worse than that of a flat plate slab system with the same thickness.

Influence of Biaxial Loads on Impact Fracture of High-Strength Membrane Materials

  • Kumazawa, Hisashi;Susuki, Ippei;Hasegawa, Osamu;Kasano, Hideaki
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.395-413
    • /
    • 2009
  • Impact tests on high-strength membrane materials under biaxial loads were experimentally conducted in order to evaluate influence of biaxial loads on impact fracture of the membrane materials for the inflated applications. Cruciform specimens of the membrane materials were fabricated for applying biaxial loadings during the impact test. A steel ball was shot using a compressed nitrogen gas gun, and struck the membrane specimen. Impact tests on uniaxial strip specimens were also conducted to obtain the effect of specimen configuration and boundary condition on the impact fracture. The results of the measured crack length and the ultra-high speed photographs indicate the impact fracture properties of the membrane fabrics under biaxial loadings. Crack length due to the impact increased with applied tensile load, and the impact damages of the cruciform membrane materials under biaxial loadings were smaller than those of under uniaxial loadings. Impact fracture of the strip specimen was more severe than that of the cruciform specimen due to the difference of boundary conditions.

Performance Evaluation of Floor Vibration of Biaxial Hollow Slab Subjected to Walking Load (보행하중에 대한 2방향 중공슬래브의 진동성능 평가)

  • Kim, Min-Gyun;Park, Hyun-Jae;Lee, Dong-Guen;Hwang, Hyun-Sik;Kim, Hyun-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.11-21
    • /
    • 2009
  • Considering that the weight of a biaxial hollow slab system is not increased with an incremental increase in its thickness, and that the flexural stiffness of a biaxial hollow slab is not significantly lower than that of a general solid slab, there has been a growing need for biaxial hollow slab systems, because long span structures are in great demand. In a long span structure, the problem of vibration of floor slabs frequently occurs, and the dynamic characteristics of a biaxial hollow slab system are quite different from the conventional floor systems. Therefore, in this study, the floor vibration of a biaxial hollow slab system subjected to walking load is investigated in comparison with a conventional floor slab system. For the efficiency of time history analysis, an equivalent plate slab model that can precisely represent the dynamic behavior of a biaxial hollow slab system is used. From the analytical results, it was determined that vibration of a biaxial hollow slab system subjected to walking load is evaluated as "office-level vibration," according to the classifications of the architectural institute of Japan and ANSI.

Behavior of Fatigue Crack Initiation and Propagation under Cyclic Tensile or Torsional Loading with Superimposed Static Biaxial Load (이축 정적 하중이 부가된 반복 인장 혹은 비틀림 하중하에서 균열 발생과 성장 거동)

  • Heo, Yong-Hak;Park, Hwi-Rip;Gwon, Il-Beom;Kim, Jin-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1446-1455
    • /
    • 2000
  • Fatigue crack initiation and propagation behavior under cyclic biaxial loading has been investigated using thin-walled tubular specimen with a hole. Two types of biaxial loading system, i.e. cyclic tensile loading with super-imposed static torsional load and cyclic torsional loading with superimposed static tensile load, with various values of the biaxial loading ratio, $\tau$ s/ $\sigma$ max (or $\tau$ max/ $\sigma$s) were employed. Fatigue tests show that fatigue crack near the hole initiates and propagates at 900 and 450 direction to the longitudinal direction of the specimen under cyclic tensile and torsion loading with static biaxial stress, respectively, and the static biaxial stress doesn't have any great influence on fatigue crack initiation and growth direction. Stress analysis near the hole of the specimen shows that the crack around the hole initiates along the plane of maximum tangential stress range. Fatigue crack growth rates were evaluated as functions of equivalent stress intensity factor range, strain energy density factor range and crack tip opening displacement vector, respectively. It is shown that the biaxial mode fatigue crack growth rates can be relatively consistently predicted with these cyclic parameters.

MECHANICAL PROPERTIES OF REUSED LITHIUM DISILICATE GLASS-CERAMIC OF IPS EMPRESS 2 SYSTEM

  • Oh Sang-Chun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.6
    • /
    • pp.572-576
    • /
    • 2002
  • This investigation was designed to estimate the biaxial flexure strength and fracture toughness of lithium disilicate glass-ceramics of IPS Empress 2 system pressed with as-received ingots and their sprue buttons. Two groups of the lithium disilicate glass-ceramics were prepared as follows: group 1 is ingot-pressed group; group 2 is sprue button-pressed group. A ball-on-three-ball test was used to determine biaxial flexure strength (BFS) of disks in wet environment. Scanning electron microscopy(SEM) analysis was conducted to observe the microstructure of the ceramics. Unpaired t-test showed that there were no differences in the mean biaxial Hem strength (BFS) and KIC values between group 1 and 2 (p > 0.05). Two groups showed similar values in the KIC and the strength at 5% failure probability. The SEM micrographs of the IPS Empress 2 glass-ceramic showed a closely packed, multi-directionally interlocking pattern of numerous lithium disilicate crystals protruding from the glass matrix. The lithium orthophosphate crystals could not be observed on the fracture surface etched. There was no a marked difference of the microstructure between group 1 and 2. Although there were no tests including color stability, casting accuracy, etc., the results of this study implied that we could reuse the sprue button of the pressed lithium disilicate glass-ceramic of IPS Empress 2 system.

Behavior of Fatigue Crack Initition and Growth in S45C Steel Under Biaxial Loading (이축하중을 받는 S45C강의 피로균열의 발생과 성장거동)

  • Park, S.H.;Lee, S.H.;Kim, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.206-211
    • /
    • 2000
  • Fatigue test was conducted on a S45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading system, i.e fully reserved cyclic torsion without a superimposed static tension or compression, fully reserved cyclic torsion with a superimposed static tension and fully reserved cyclic torsion with a superimposed static compression were employed. The test results show that a superimposed static tensile mean stress reduced fatigue lifetime. however a superimposed static compressive mean stress increased fatigue lifetime. Experimental results indicated that cracks were initiated on planes of maximum shear strain with either a superimposed mean stresses or not. A biaxial mean stress had an effect on the direction which cracks nucleated and propagated at stage I (mode II).

  • PDF

Development of Doubler Design System for Ship Plate Members Subjected to In-plane Shear and Biaxial Compressive Loads (면내 전단하중과 양축압축하중을 받는 선박 판부재의 이중판 설계시스템 개발)

  • Ham, Juh-Hyeok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.242-249
    • /
    • 2017
  • A design system for doubler reinforcement of the ship plate members subjected to in-plane shear and biaxial compressive loads was developed. This design system of doubler reinforcement on ship plate members established by design supporting system and this system was based on the buckling evaluation process of ship plate members for these in-plane loads. Each design parameters were suggested by equations as the form of influence coefficients for the doubler reinforcement subjected to the various in-plane loads including shear load. Strength of doubler plate member reinforced on the plate member could be suggested by the equivalent flat plate thickness after the consideration of corelation equations in the design system of doubler reinforcement. Level of strength recovery of ship plate members for these in-plane loads according to the local reinforcement by doubler could be suggested by use of this design system in the initial repair design stage of shipyards.

Biaxial Compressive Deformation Characteristics and Microstructure Change in a Round Copper Pipe (원형 동관의 2축압축 변형특성 및 조직변화에 관한 연구)

  • Yoo, C.K.;Won, S.T.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.67-73
    • /
    • 2013
  • The deformation characteristics and microstructure changes in a round copper pipe under biaxial compression was studied using a horizontal compression die. The change of material properties, punch load and deformation behavior were monitored using various compressive deformation rates in the range of 0.5mm/min.~450mm/min. The strains, either tensile or compressive, were estimated from Vickers microhardness test results. The punch load and deformation characteristics of the round copper pipes were found to change greatly at a deformation rate of about 200mm/min. The punch load decreased with increasing compressive deformation rate. The results of numerical simulations agreed well with what was expected from the final microstructure and the hardness profile estimated from the final deformation strains.

Digital Contouring Control of Biaxial System (2축 디지틀 윤곽제어)

  • Lee, Gun-Bok;Ko, Tae-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.435-437
    • /
    • 1998
  • In this productive system, it needs to control the each axis motion harmoniously to perform accurately for the manufacturing, transporting and printing. Independent Axis Control usually used for this objection. However, if Independent Axis Control mismatched the parameter of each axis system or in the case of free curve tracking or the case of high speed control, there would be big contour error so that cannot achieve control objection. As a result, there is Contour Control method suggested to supply for this defect. This paper carried modeling of biaxial system and implemented Independent Axis Control & Contouring Control on straight line, circular, and coner path by simulation and experiment. If feedrate increased, contour error growed. In consequence, according to this factor, we introduced contouring controller, so we could find the fact that contour error was reduced more than that of independent axis control about each path.

  • PDF