• Title/Summary/Keyword: Biaxial birefringence

Search Result 2, Processing Time 0.019 seconds

Theoretical Analysis of Biaxial Films for the Optical Compensation of TN-LCDs (TN-LCD 광학보상을 위한 Biaxial Film의 이론적 해석)

  • Kim, Bong-Sik;Kang, Choon-Ky;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.209-212
    • /
    • 2012
  • In this paper, we have studied on the optimal design of the optical compensation film for the TN-LCDs. To have wide viewing angle panels, several methods such as multi-domain method, optical path method, and phase compensation method have been proposed. Among these methods, this paper focused on the phase compensation method. In the phase compensation method, the phase retardation generated from the optical birefringence for the off-axis incident is compensated by using optical films with refractive anisotropy. To compensate the phase retardation of the TN-LCDs, we have proposed design concept for the biaxial optical films and analyzed the optical performance for the proposed structures. The calculation of the dynamic motion of the liquid crystals was based on the Ericksen-Leslie theory and the optical performance of the TN-LCD was calculated from the Extended Jones Matrix Method. From the results, we have confirmed that the optical characteristics of the TN-LCDs with the biaxial films have been improved considerably compared with the TN-LCDs compensated by the combination of the uniaxial films.

Theoretical Investigation of the Generation of Broad Spectrum Second Harmonics in Pna21-Ba3Mg3(BO3)3F3 Crystals

  • Kim, Ilhwan;Lee, Donghwa;Lee, Kwang Jo
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.458-465
    • /
    • 2021
  • Borate nonlinear optical crystals have been used as frequency conversion devices in many fields due to their unique transparency and nonlinearity from ultraviolet to visible spectral range. In this study, we theoretically and numerically investigate the properties of broadband second harmonic generation (SHG) in the recently reported Pna21-Ba3Mg3(BO3)3F3 (BMBF) crystal. The technique is based on the simultaneous achievement of birefringence phase matching and group velocity matching between interacting waves. We discussed all factors required for broadband SHG in the BMBF in terms of two types of phase matching and group velocity matching conditions, the beam propagation direction and the corresponding effective nonlinearity and spatial walk-off, and the spectral responses. The results show that bandwidths calculated in the broadband SHG scheme are 220.90 nm (for Type I) and 165.85 nm (for Type II) in full-width-half-maximum (FWHM). The central wavelength in each case is 2047.76 nm for Type I and 1828.66 nm for Type II at room temperature. The results were compared with the non-broadband scheme at the telecom C-band.