• Title/Summary/Keyword: Biceps brachii

Search Result 180, Processing Time 0.025 seconds

Prevalence of MSDs and Postural Risk Assessment in Floor Mopping Activity Through Subjective and Objective Measures

  • Naik, Gouri;Khan, Mohammed Rajik
    • Safety and Health at Work
    • /
    • v.11 no.1
    • /
    • pp.80-87
    • /
    • 2020
  • Background: Residential and commercial cleaning is a part of our daily routine to maintain sanitation around the environment. Health care of professionals involved in such cleaning activities has become a major concern all over the world. The present study investigates the risk of musculoskeletal disorders in professional cleaners involved in floor mopping tasks. Methods: A cross-sectional study was performed on 132 mopping professionals using a modified Nordic questionnaire. The Pearson correlation test was implemented to study the association of perceived pain with work experience. The muscle strain and postural risk were evaluated by means of three-channel electromyography and real-time motion capture respectively of 15 professionals during floor mopping. Results: Regarding musculoskeletal injuries, risk was reported majorly in the right hand, lower back, left wrist, right shoulder, left biceps, and right wrist of the workers. Work experience had a low negative association with MSDs in the left wrist, right wrist, right elbow, lower back, and right lower arm (p < 0.01). Surface EMG showed occurrence of higher muscle activity in upper trapezius and biceps brachii (BB) muscles of the dominant hand and flexor carpi radialis and BB muscles of the nondominant hand positioned at the upper and lower portion of the mop rod, respectively. Conclusion: Ergonomic mediations should be executed to lessen the observed risk of musculoskeletal injuries in this professional group of workers.

The Effects of Contralateral Upper and Lower Limb and Trunk Muscle Activation During Ipsilateral Upper Limb D2 Pattern Exercise (한쪽 상지의 D2 패턴 운동동안 반대측 상지, 하지 및 체간 근육의 활성도에 미치는 영향)

  • Lee, Seung-Min;Lee, Sang-Yeol
    • PNF and Movement
    • /
    • v.16 no.1
    • /
    • pp.151-159
    • /
    • 2018
  • Purpose: The aim of this study was to examine the activation of the contralateral upper and lower extremities and trunk muscle during ipsilateral upper extremity diagonal isokinetic exercise. Methods: Twenty-one healthy male subjects with no history of shoulder injury undertook ipsilateral diagonal isokinetic exercise at 60, 120, and $180^{\circ}/sec$, utilizing a standard Biodex protocol. Muscle activation amplitudes were measured in the upper trapezius, pectoralis major, biceps brachii, rectus abdominis, external oblique, rectus femoris, adductor longus, and biceps femoris muscles using electromyography. A one-way analysis of variance and paired t-tests were conducted, and the data were analyzed using SPSS, version 21.0. Results: The results revealed no statistically significant interaction between motion and angular velocity and no statistically significant contralateral muscle activation according to angular velocity (p>0.05). However, they revealed statistically significant contralateral muscle activation according to motion (p<0.05). Conclusion: These results suggest that the movements involved in contralateral upper extremity diagonal isokinetic exercise can enhance muscle strength in patients affected by stroke, fracture, burns, or arthritis.

Spike Variable Analysis of Surface EMG Signal During Constant Voluntary Contraction (일정한 자의 수축 시 표면 근전도 신호에 대한 Spike 변수 해석)

  • Yang, Hee-Won;Joung, Eui-Kon;Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.809-816
    • /
    • 2007
  • This paper presents an analysis of the SEMG signal quantitatively and automatically using spike variables : MSF, MSA, MSS, and MSD. The SEMG signals were recorded in three muscle parts, first dorsal interosseus, biceps brachii and abductor policis brevis, from 14 normal subjects. Emphasis was placed on the following 3 points in the experiments. 1) Suggest proper window length to estimate the spike variables 2) Investigate variation of the spike variables to varying %MVC. 3) Investigate variation of the spike variables to the sustained contraction for 30 minutes. Quantitative results were showed and examined in point of practical clinical application.

Quantitative Analysis of EMG Amplitude Estimator for Surface EMG Signal Recorded during Isometric Constant Voluntary Contraction (등척성 일정 자의 수축 시에 기록한 표면근전도 신호에 대한 근전도 진폭 추정기의 정량적 분석)

  • Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.843-850
    • /
    • 2017
  • The EMG amplitude estimator, which has been investigated as an indicator of muscle force, is utilized as the control input to artificial prosthetic limbs. This paper describes an application of the optimal EMG amplitude estimator to the surface EMG signals recorded during constant isometric %MVC (maximum voluntary contraction) for 30 seconds and reports on assessing performance of the amplitude estimator from the application. Surface EMG signals, a total of 198 signals, were recorded from biceps brachii muscle over the range of 20-80%MVC isometric contraction. To examine the estimator performance, a SNR(signal-to-noise ratio) was computed from each amplitude estimate. The results of the study indicate that ARV(average rectified value) and RMS(root mean square) amplitude estimation with forth order whitening filter and 250[ms] moving average window length are optimal and showed the mean SNR improvement of about 50%, 40% and 20% for each 20%MVC, 50%MVC and 80%MVC surface EMG signals, respectively.

Surface EMG Amplitude Estimation by using Spike and Turn Variables (Spike와 Turn 변수를 이용한 표면근전도 신호의 진폭 추정)

  • Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.124-130
    • /
    • 2018
  • The EMG amplitude estimator, which has been investigated as an indicator of muscle force, is of high relevance not only in biomechanical studies but also more and more in clinical applications. This paper presents a new approach to estimate surface EMG amplitude by using the mean spike and mean turn amplitude(MSA and MTA) variables. Surface EMG signals, a total of 198 signals, were recorded from biceps brachii muscle over the range of 20-80%MVC isometric contraction and performance of the MSA and MTA variables applied to amplitude estimation of the EMG signals were investigated. To examine the performance, a SNR(signal-to-noise ratio) was computed from each amplitude estimate. The results of the study indicate that MSA and MTA amplitude estimations with first order whitening filter and 300[ms]-350[ms] moving average window length are optimal and show better performance(mean SNR improvement of 6%-15%) than the most frequently used variables(ARV and RMS).

Frequency analysis of EMG signals using power spectrum density (전력 스펙트럼 밀도를 이용한 근전도 신호의 주파수 해석)

  • Kim, Kwnag-Soon;Byun, Youn-Sik;Park, Sang-Hui
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1985 no.06
    • /
    • pp.5-8
    • /
    • 1985
  • This paper describes the use of power spectral densing in the examination of the electromogram (EMG). The EMG signals were obtained with surface electrodes from the biceps brachii muscle. Shifts of the high-energy regions of the power spectra can be inferred from the changes in the mean frequency. This paper is consistent with result that most information of EMG signal is located 10-200 Hz.

  • PDF

Analysis of Muscle Activities for Upper Extremity According to Satbar-Grip Patterns (샅바잡기 유형별 동작 시 상지근육의 근활동치 비교 분석)

  • Kim, Tae-Wan;Hwang, Kyu-Yeon;Kim, Jung-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.95-103
    • /
    • 2006
  • The purpose of this study was to analyze a change of maximal grip forces and EMG of agonists in upper extremity of 8 professional Ssirum players according to Satbar-grip patterns, to elucidate prime agonist muscles, contribution rate of each muscle, and a difference on EMG in upper extremity. one-way ANOVA(RM) performed for average and maximal values of each player after standardization and statistical significance was set as p<.05. The result includes the following: the highest grip force was A type with a statistic significance using one-way ANOVA and Duncan's comparison between A and C type. In summary the highest grip force was exerted on extension in the wrist than flexion in all grip types. Average and maximal values of biceps brachii and brachioradialis muscles were statistically significant and ones of flexor carpi ulnaris and extensor capi ulnaris were not.

Optimization-based Real-time Human Elbow Joint Angle Extraction Method (최적화 기반 인간 팔꿈치 관절각 실시간 추출 방법)

  • Choi, Young-Jin;Yu, Hyeon-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1278-1285
    • /
    • 2008
  • An optimization-based real-time joint angle extraction method of human elbow is proposed by processing the biomedical signal of surface EMG (electromyogram) measured at the center point of biceps brachii. The EMG signal is known as non-stationary (time-varying) signal, but we assume that it is quasi-stationary because a physical or physiological system has limitations in the rate at which it can change its characteristics. Based on the assumption, a pre-processing method to obtain pre-angle values from raw EMG signal is firstly suggested, and then an optimization method to minimize the error between the pre-angle and real joint angle is proposed in this paper. Finally, we suggest the experimental results showing the effectiveness of the proposed algorithm.

The Functional Results of Forearm and Upper Arm Replantation: Report on Two Cases

  • Yu, Chang Eun;Chae, Young Ju;Lee, Jun-Mo
    • Archives of Reconstructive Microsurgery
    • /
    • v.23 no.2
    • /
    • pp.82-85
    • /
    • 2014
  • Upper extremity replantation is relatively less commonly performed than finger or hand replantation. We have experienced one case of forearm replantation and one case of upper arm replantation. After the replantation, limb volume at the biceps brachii muscle level below the replantation level appeared to be appropriate, however, the motor function of the muscles and the sensitivity were disappointing. For replantation of forearm and upper arm, restoration of the motor function and sensitivity of the extremity below the amputation level as well as the morphologic reconstruction have to be considered.

Human Arm Motion Tracking based on sEMG Signal Processing (표면 근전도 신호처리 기반 인간 팔 동작의 추종 알고리즘)

  • Choi, Young-Jin;Yu, Hyeon-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.769-776
    • /
    • 2007
  • This paper proposes the human arm motion tracking algorithm based on the signal processing for surface EMG (electromyogram) sensors attached on both upper arm and shoulder. The signals acquired by using surface EMG sensors are processed with choosing the maximum in a short period, taking the absolute value, and filtering noises out with a low-pass filter. The processed signals are directly used for the motion generation of virtual arm in real time simulator. The virtual arm of simulator has two degrees of freedom and complies with the flexion and extension motions of elbow and shoulder. Also, we show the validity of the suggested algorithms through the experiments.