• 제목/요약/키워드: Bimetals

검색결과 6건 처리시간 0.022초

Degradation of Chlorinated Phenols by Zero Valent Iron and Bimetals of Iron: A Review

  • Gunawardana, Buddhika;Singhal, Naresh;Swedlund, Peter
    • Environmental Engineering Research
    • /
    • 제16권4호
    • /
    • pp.187-203
    • /
    • 2011
  • Chlorophenols (CPs) are widely used industrial chemicals that have been identified as being toxic to both humans and the environment. Zero valent iron (ZVI) and iron based bimetallic systems have the potential to efficiently dechlorinate CPs. This paper reviews the research conducted in this area over the past decade, with emphasis on the processes and mechanisms for the removal of CPs, as well as the characterization and role of the iron oxides formed on the ZVI surface. The removal of dissolved CPs in iron-water systems occurs via dechlorination, sorption and co-precipitation. Although ZVI has been commonly used for the dechlorination of CPs, its long term reactivity is limited due to surface passivation over time. However, iron based bimetallic systems are an effective alternative for overcoming this limitation. Bimetallic systems prepared by physically mixing ZVI and the catalyst or through reductive deposition of a catalyst onto ZVI have been shown to display superior performance over unmodified ZVI. Nonetheless, the efficiency and rate of hydrodechlorination of CPs by bimetals depend on the type of metal combinations used, properties of the metals and characteristics of the target CP. The presence and formation of various iron oxides can affect the reactivities of ZVI and bimetals. Oxides, such as green rust and magnetite, facilitate the dechlorination of CPs by ZVI and bimetals, while oxide films, such as hematite, maghemite, lepidocrocite and goethite, passivate the iron surface and hinder the dechlorination reaction. Key environmental parameters, such as solution pH, presence of dissolved oxygen and dissolved co-contaminants, exert significant impacts on the rate and extent of CP dechlorination by ZVI and bimetals.

표면개질 기술에 의한 Cu 기반 바이메탈의 인장강도, 스크래치 저항성 및 트라이볼로지 성능 향상 (Improvement in Tensile Strength, Scratch Resistance and Tribological Performance of Cu-based Bimetals by Surface Modification Technology)

  • 카림바예프 루슬란;아마노프 아웨즈한
    • Tribology and Lubricants
    • /
    • 제37권3호
    • /
    • pp.83-90
    • /
    • 2021
  • In this study, an ultrasonic nanocrystal surface modification (UNSM) was used to improve the mechanical properties, scratch resistance and tribological performance of Cu-based bimetals, which are usually used to manufacture sliding bearings and bushings for internal combustion engines (ICEs). Two different Cu-based bimetals, namely CuPb10Sn10 and CuSn10Bi7, were sintered onto a low carbon steel substrate. The mechanical properties and dry tribological performance using a tensile tester and micro-tribo tester were evaluated, respectively. The scratch resistance was assessed using a micro-scratch tester at an incremental load. The tensile test results showed that the yield strength (YS) and ultimate tensile strength (UTS) of both Cu-based bimetals increased after UNSM. Furthermore, the scratch and tribological tests results revealed that the scratch resistance and tribological performance of both Cu-based bimetals were improved by the application of UNSM. These improvements were mainly attributed to the eliminated pores, increased hardness and reduced roughness after UNSM. CuSn10Bi7 demonstrated better mechanical properties, scratch resistance and tribological performance than CuPb10Sn10. It was found that the presence of Bi in CuSn10Bi7 formed a Cu11Bi7 intermetallic phase, which is harder than Cu3Sn. Hence, CuSn10Bi7 demonstrated higher strength and wear resistance than CuPb10Sn10. In addition, a CuSn10Bi7 formed both SnO2 and Bi2O3 that prevented adhesion and improved the tribological performance. It can be expected that under dry tribological conditions, ICEs can utilize UNSM bearings and bushings made of CuSn10Bi7 instead of CuPb10Sn10 under oil-lubricated conditions.

압연공정을 이용한 가전용 신 바이메탈재의 개발 (Development of new bimetal material for home appliances by using the rolling process)

  • 박상순;배동수;배동현
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.389-393
    • /
    • 2007
  • The most demanded bimetals in home appliances are manufactured by mainly cladding process and these are mainly consist of Cu alloy and Ni alloy. But it is very difficult to clad these alloys, because the brittle ${Cu_3}{O_4}$ oxide film formed easily on Cu alloy surface during cladding process. Clad rolling and heat treatment processes were applied for the development of bimetals by using the Ni alloy and the 3 types of Cu alloys. Optical microstructure was observed and micro-hardness, specific resistance, deflection were measured from the manufactured new bimetals specimens.

  • PDF

압연공정을 이용한 가전용 신 바이메탈재의 개발 (Development of New Bimetal Material for Home Appliances by Using the Rolling Process)

  • 박상순;이제헌;배동현;배동수
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.375-380
    • /
    • 2007
  • The bimetals of home appliances are mainly manufactured by cladding process and these are almost consisted with Cu alloy and Ni alloy. But it is very difficult to clad these alloys, because the brittle $Cu_3O_4$ oxide film formed easily on Cu alloy surface during cladding process. Clad rolling and heat treatment processes were applied for the development of bimetals by using the Ni alloy and the 3 types of Cu alloys. Optical microstructure, micro-hardness, specific resistance, and deflection and line profile of newly processed bimetals specimens were observed and measured in this paper. Inter-diffusion was observed between Cu and Ni element in the interface of heat treated Cu alloy and Ni alloy clad material. The C1220 and Invar36 clad material showed the best property of deflection among the 3 kind of clad materials.

영가금속에 의한 Endosulfan I과 II의 환원분해에 미치는 계면활성제의 영향 (Effect of surfactants on reductive degradation of Endosurfan I and II by ZVM)

  • 김진영;김영훈;신원식;전영웅;송동익;최상준
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.187-190
    • /
    • 2002
  • Reductive dechlorination of endosulfans was studied with zero valent metals (ZVMs) and bimetals in aqueous batch reactors. The effect of surfactants was evaluated. Endosulfan was successfully dechlorinated with zero valent iron. However, a bimetal, palladium coated iron (Pd/Fe) showed a highly enhanced reactivity for both endosulfan I and II indicating palladium act as a dechlorination catalyst on the iron. The effect of surfactants on degradation with ZVM has been very controvertible. Variable concentration of a nonionic surfactant, Triton X-100 and an anionic surfactant, SDS were added into the reactor with ZVM. The reaction rates of endosulfan were increased with both surfactants. In the case of Triton X-100, the reaction rate was increased with the increasing surfactant concentration up to 400 mg/L. Addition of small amount of surfactant under the CMC, the reaction rate was increased. However, the enhancing effect was diminished when a higher concentration of surfactant (1,000 mg/L) was used. Current study implicate that the surfactant adsorbed on the metal surface might increase the surface concentration of endosulfan resulting in the increased reaction rate. However, partitioning of endosulfan into the micelle formed at the high concentration of surfactant diminish the enhancing effect by reducing the contact chance between target compound and the metal surface.

  • PDF

금속함유 베타 제올라이트 흡착제 상에서 LNG가스 내에 부취된 황화합물의 선택적 흡착제거 (Selective Removal of Odorants in Natural Gas by Adsorption on Metal-containing Beta Zeolite Adsorbents)

  • 오상승;김건중
    • 공업화학
    • /
    • 제18권5호
    • /
    • pp.459-466
    • /
    • 2007
  • 본 연구에서는 다양한 금속들이 담지된 H형 베타 제올라이트(BEA)를 황성분 함유 부취제 제거용 흡착제로 활용하였다. 단일 금속이 담지되거나 또는 두 종류의 금속이 복합적으로 함유된 여러 종류의 흡착제를 사용하여 연속적인 흡착층에서 THT와 TBM 부취제에 대한 개별적 혹은 경쟁적인 흡착 특성을 평가하였다. 순수한 H형 BEA 제올라이트는 TBM 화합물에 대하여 가장 높은 흡착능력을 나타내었으며, THT 부취제는 Fe, Pd 금속 및 ZnO를 함유한 HBEA상에서 더 많은 양으로 흡착 제거되었다. 복합금속함유 흡착제의 경우에는 Cu-Zn/HBEA와 Fe-Mo/HBEA가 TBM 부취제에 대하여 더 높은 흡착용량을 나타내었다.