• Title/Summary/Keyword: Bio-concrete

Search Result 86, Processing Time 0.03 seconds

A Study on the physical Property of the Bio Concrete (바이오콘크리트의 물리적 특성에 관한 연구)

  • Lee, Jong-Chan;Lee, Sea-Hyun;Park, Young-Shin;Park, Jae-Myung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.509-512
    • /
    • 2006
  • We have many environmental problems by the polluted materials as a results of mechanical development these days. So people want to use building products made from natural things and take a good effect for people from those bio products. We can instance electron wave shelding, far infrared ray and anion emission, and anti-bacterial property as the latest trend of the bio building material. So we had a experiment to investigate how much bio materials affect concrete when we use in the concrete with cement substitution. We tested slump, 7days compressive strength, and air contents for physical properties of bio concrete. The result is that bio concretes with four bio ingredients have proper values comparing with target values for slump and air content but lower compressive strength than plain concrete.

  • PDF

Evaluation of Mechanical Characteristics of Castor Oil Based Bio-Polymer Concretes for Ultra Thin Overlays (피마자유를 이용한 초박층 덧씌우기용 바이오 폴리머 콘크리트의 역학적 특성 평가)

  • Park, Hee Mun;Choi, Ji Young;Kim, Tae Woo;Ahn, Young Jun;Le, Van Phuc
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.39-45
    • /
    • 2013
  • PURPOSES : The objective of this study is to evaluate the mechanical characteristics of castor oil based bio-polymer concrete for use of ultra thin overlays. METHODS : To evaluate the mechanical properties of bio-polymer concrete, the various laboratory tests including compressive, tensile, and flexural strength, and elongation tests were conducted on bio-polymer concrete specimens in this study. The mechanical characteristics of bio-polymer concretes were examined by changing the content of hardener and polymer binder to determine the optimum content for ultra-thin overlays. The bio-polymer concrete developed in this study was used for field trial test of the ultra-thin bridge deck pavement for verifying the workability and monitoring the long-term performance of materials. RESULTS : Test results showed that tensile and the flexural strength of bio-polymer concretes increase and the elongation of bio-polymer concrete decreases with increase of binder content. A field adhesive strength tests conducted on bridge deck pavement indicates the bio-polymer concrete has more than 2MPa of adhesive strength satisfy with the design criteria. CONCLUSIONS : The bio-polymer concrete with more than 20% content of castor oil was developed for ultra-thin overlays in this study. It is found from this study that the 35% of hardener content is most appropriate for maintaining the strength characteristics and flexibility.

A Study on the Development of Self-Repairing Smart Concrete Using Microorganism (미생물(微生物)을 이용한 자기수부성(自己修復性) 스마트 콘크리트 개발에 관한 기초연구)

  • Kim, Wha-Jung;Chun, Woo-Young;Ko, Kwan-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.441-444
    • /
    • 2008
  • This study was conducted to develop self-repairing ability for concrete so that inspection could be available even in the event of minute cracks, for more economic concrete structure maintenance and longevity. This is a basic attempt to develop self-repairing concrete using the biochemical reaction of bacteria through an innovative method. In this study, the characteristics and problems posed by self-repairing concrete as proposed in international scientific journals were examined, and the potential of new concrete reformation and performance improvement using bio-mineralization was explored. Bio-mineralization, which is an action of creating bio-minerals using an organism, was proposed. A new concept of bacteria such as bacillus pasteurii using bio-mineralization that precipitates calcium carbonate, as well as the possibility of mechanical performance and durability of concrete and repair of cracks, was introduced. Directions for further study through basic experiments and developmental feasibility of self-repairing concrete were also presented.

  • PDF

A Evaluation of Environmental Resistance for Bio-Polymer Concretes (바이오 폴리머 콘크리트의 환경 저항성 평가 연구)

  • Kim, Je Won;Kim, Tae Woo;Park, Hee Mun;Kim, Bu Il
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.75-79
    • /
    • 2013
  • PURPOSES : The objective of this study is to evaluate the environmental resistance of bio-polymer concrete for use of pavement materials developed for reducing the carbon-dioxide. METHODS : The compression, tension, and bending strength tests were conducted on the bio-polymer concrete specimens with and without environmental conditioning. The specimens were conditioned using the freezing-thaw and accelerated weathering process for long period of time. To assess the resistance against chloride, the chloride ion penetration resistance tests were carried out on the bio-polymer concrete specimens. RESULTS : Test results show that the maximum difference in strength between specimens with and without conditioning is about 2.6MPa indicating that the effect of environmental conditioning on specimen strength is negligible. Based on the chloride ion penetration resistance test, the penetration quantity of electric charge of the specimens is zero and there is no ion penetration within the bio-polymer concrete. CONCLUSIONS : It is found from this study that there is slight change in strength of bio-polymer concretes before and after environmental conditioning process and no chloride ion penetration observed in these specimens. Therefore, the developed bio-polymer concretes can be applied effectively as pavement materials due to the small change of physical properties with environment change.

A Study on the Evaluation of Surface Dose Rate of New Disposal Containers Though the Activation Evaluation of Bio-Shield Concrete Waste From Kori Unit 1

  • Kang, Gi-Woong;Kim, Rin-Ah;Do, Ho-Seok;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.133-140
    • /
    • 2021
  • This study evaluates the radioactivity of concrete waste that occurs due to large amounts of decommissioned nuclear wastes and then determines the surface dose rate when the waste is packaged in a disposal container. The radiation assessment was conducted under the presumption that impurities included in the bio-shielded concrete contain the highest amount of radioactivity among all the concrete wastes. Neutron flux was applied using the simplified model approach in a sample containing the most Co and Eu impurities, and a maximum of 9.8×104 Bq·g-1 60Co and 2.63×105 Bq·g-1 152Eu was determined. Subsequently, the surface dose rate of the container was measured assuming that the bio-shield concrete waste would be packaged in a newly developed disposal container. Results showed that most of the concrete wastes with a depth of 20 cm or higher from the concrete surface was found to have less than 1.8 mSv·hr-1 in the surface dose of the new-type disposal container. Hence, when bio-shielded concrete wastes, having the highest radioactivity, is disposed in the new disposal container, it satisfies the limit of the surface dose rate (i.e., 2 mSv·hr-1) as per global standards.

Evaluation of Penetration Depth of Emulsified Refined Bio Diesel Applied to the Concrete (유화처리 바이오디젤이 도포된 콘크리트의 침투깊이 판정)

  • Baek, Cheol;Kim, Tae-Woo;Lee, Jae-Jin;Lee, Dong-Yun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.17-18
    • /
    • 2017
  • This study is to provide a evaluation method for the penetration depth of emulsified refined bio diesel(ERBD)applied to a surface of the concrete by using water absorption capability of the concrete. The concrete applied with ERBD was immersed at water for 1 min., 5min., and 10 min. and then was checked the brightness with elapse of time. Test results indicated that there was clear difference between ERBD part and non ERBD part in concrete specimen after measuring the brightness until 120min.

  • PDF

Durability Performances of Concrete Produced with Recycled Bio-Polymer Based on Sargassum Honeri (괭생이모자반 기반의 자원순환형 바이오 폴리머를 혼입한 콘크리트의 내구성능)

  • Lee, Byung-Jae;Lee, Sun-Mok;Hyun, Jung-Hwan;Kim, Yun-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.445-451
    • /
    • 2019
  • In this study, we evaluated the durability of concrete produced with recycled polymer that could replace synthetic polymer, which is the main raw material of bridge deck concrete pavement. As a result of the slump and air content test, the requirements of the Korea Highway Corporation Standard were satisfied with all mixing conditions. The slump was lowered when incorporating the recycled bio-polymer, compared to other mix proportions concrete. In contrast, the compressive strength was increased by 6.3~24.4% when the recycled bio-polymer was mixed, compared to the concrete produced with synthetic polymer. It should be noted that the compressive strength was lowered when synthetic polymer was added to concrete mixture. Durability test results showed the best durability when incorporating synthetic polymer. The durability of concrete also increased as the amount of recycled bio-polymer increased, however, the impact was slightly smaller than that of synthetic polymer.

Mechanical Properties of Mortar Containing Bio-Char From Pyrolysis (바이오숯을 함유한 모르타르의 역학적 특성)

  • Choi, Won Chang;Yun, Hyun Do;Lee, Jae Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.67-74
    • /
    • 2012
  • Bio-char, obtained from biomass as a by-product of the pyrolysis process, is used successfully as a soil amendment and carbon sequester in this limited study. Recent and active research from literatures has extended the application of bio-char in the industry to promote sustainability and help mitigate the negative environmental impacts caused by carbon emissions. This study aims to investigate the feasibility of high-carbon bio-char as a carbon sequester and/or admixture in mortar and concrete to improve the sustainability of concrete. This paper presents the experimental results of an initial attempt to develop a cement admixture using bio-char. In particular, the effects of the water retention capacity of bio-char in concrete are investigated. The chemical and mechanical properties (e.g., the chemical components, microstructure, concrete weight loss, compressive strength and mortar flow) are examined using sample mortar mixes with varying replacement rates of cement that contains hardwood bio-char. The experimental results also are compared with mortar mixes that contain fly ash as the cement substitute.

Strength Evaluation of Concrete Containing Ferronickel Slag Aggregate (페로니켈 슬래그 잔골재가 혼입된 콘크리트의 강도 평가)

  • Choi, Min Guen;Son, Jin-Su;Cho, Bong suk;Lee, Jin-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.65-72
    • /
    • 2022
  • For sustainable development in the construction industry, blast furnace slag has been used as a substitute for cement in concrete. In contrast, ferronickel slag, which is the by-product generated during smelting to ferronickel used in the manufacturing of stainless steel and nickel alloys, has a limitation to use as a binder and an aggregate due to its expansive characteristics. Recently, stabilization technology of ferronickel slag has been improved and studies have been carried out to utilize ferronicke slag as fine aggregate in concrete. Therefore, in this study, basic mechanical properties of concrete used in ferronickel slag aggregate was evaluated. The compressive strength (24, 30, 40 MPa) and replacement rate of ferronickel slag aggregate (0, 10, 25, 50%) were considered as experimental variables. As a result of test, concrete replaced fine aggregate with 25% ferronickel slag aggregate showed superior performance in the compressive strength and flexural strength.