• Title/Summary/Keyword: Bioconjugation

Search Result 20, Processing Time 0.025 seconds

Bioconjugation of Poly(poly(ethylene glycol) methacrylate)-Coated Iron Oxide Magnetic Nanoparticles for Magnetic Capture of Target Proteins

  • Kang, Sung-Min;Choi, In-Sung S.;Lee, Kyung-Bok;Kim, Yong-Seong
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.259-264
    • /
    • 2009
  • Chemical modification of magnetic nanoparticles(MNPs) with functional polymers has recently gained a great deal of attention because of the potential application of MNPs to in vivo and in vitro biotechnology. The potential use of MNPs as capturing agents and sensitive biosensors has been intensively investigated because MNPs exhibit good separation-capability and binding-specificity for biomolecules after suitable surface functionalization processes. In this work, we demonstrate an efficient method for the surface modification of MNPs, by combining surface-initiated polymerization and the subsequent conjugation of the biologically active molecules. The polymeric shells of non-biofouling poly(poly(ethylene glycol) methacrylate)(pPEGMA) were introduced onto the surface of MNPs by surface-initiated, atom transfer radical polymerization(SI-ATRP). With biotin as a model of biologically active compounds, the polymeric shells underwent successful post-functionalization via activation of the polymeric shells and bioconjugation of biotin. The resulting MNP hybrids showed a biospecific binding property for streptavidin and could be separated by magnet capture.

Recent progress in selective bioconjugation

  • Subramani Rajkumar;Abhinav Bhise;Kondapa Naidu Bobba;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.146-154
    • /
    • 2020
  • Selective installation of proteins using chemical reagents is important for the development of potential biomaterials for the treatment of human diseases. However, modification in a chemo- and regioselective manner under physiological conditions is a great challenge due to the presence of multiple reactive centers in the protein. Currently, the majority of conjugations are limited to lysine (Lys)- and cysteine (Cys)-selective reagents. Thus, they have been extensively studied. Apart from Lys and Cys, widespread site selectivity has been recently achieved through most of the 20 naturally occurring amino acid-bearing reactive functional groups. Consequently, this review focused on several recent achievements in site-selective modification of the rarest amino acid backbones (e.g., methionine, serine, glutamic acid, and tyrosine).

Development of a High-performance COVID-19 Diagnostic Kit Employing Improved Antibody-quantum dot Conjugate

  • Seongsoo Kim;Hyunsoo Na;Hong-Geun Ahn;Han-Sam Park;Jaewoong Seol;Il-Hoon Cho
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.344-354
    • /
    • 2023
  • This study emphasizes the importance of early diagnosis and response to COVID-19, leading to the development of a rapid diagnostic kit using quantum dots. The research focuses on finely tuning bioconjugation with quantum dots to enhance the accuracy and sensitivity of COVID-19 diagnosis. We have developed a COVID-19 rapid diagnostic kit that exhibits a sensitivity more than 50 times higher than existing COVID-19 diagnostic kits. Quantum dots enable the accurate detection of COVID-19 viral antigens even at low concentrations, providing a rapid response in the early stages of infection. The COVID-19 quantum dot diagnostic kit offers quick analysis time, utilizing the quantum properties of particles to swiftly measure COVID-19 infection for immediate response and isolation measures. Additionally, this diagnostic kit allows for multiple analyses with ease, as multiple quantum dots can detect various antigens and antibodies simultaneously in a single experiment. This efficiency enhances testing, reduces sample requirements, and lowers experimental costs. The application of this diagnostic technology is anticipated in the future for early diagnosis and monitoring of other infectious diseases.

Atom Transfer Radical Polymerization of [Poly(ethylene glycol)methyl ether] Methacrylate Using an Amide-Based Initiator (아미드기를 가지는 개시제를 이용한 [Poly(ethylene glycol)Methyl Ether] Methacrylate의 원자 이동 라디칼 중합)

  • Lee, Hyo-Kyung;Lee, Sun-Gu;Paik, Hyun-Jong
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.550-554
    • /
    • 2007
  • Atom transfer radical polymerization (ATRP) has been widely used in bioconjugation as it is an efficient and facile method to prepare polymers with pre-designed structures. Quite often, bioconjugation with proteins employs primary amines in proteins as a functional group to attach an initiator. When 2-bromoisobutryl bromide, the most widely used precursor for ATRP initiator, is used, ${\alpha}-halo$ amide initiating groups are formed in the proteins, which are known to exhibit slow initiation behavior in the ATRP process. Here we studied the ATRP of [poly(ethylene glycol)methyl ether] methacrylate (PEGMA) using amide-based initiator. PEGMA differs for both the nature and size of the polymer side branches and shows good solubility in water and a property that made it an ideal candidate for biomaterials. While normal ATRP produced ill-defined p(PEGMA) with amide based initiators, the halogen exchange method and the external additional of deactivator effectively improved the control of ATRP of PEGMA.

Preparation of Immunotoxin Herceptin-Botulinum and Killing Effects on Two Breast Cancer Cell Lines

  • Hajighasemlou, Saieh;Alebouyeh, Mahmoud;Rastegar, Hossein;Manzari, Mojgan Taghizadeh;Mirmoghtadaei, Milad;Moayedi, Behjat;Ahmadzadeh, Maryam;Parvizpour, Farzad;Johari, Behrooz;Naeini, Maria Moslemi;Farajollahi, Mohammad M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5977-5981
    • /
    • 2015
  • Background: Worldwide, breast cancer is the most common cancer diagnosed among women and a leading cause of cancer deaths. The age of onset in Iran has become reduced by a decade for unknown reasons. Herceptin, a humanized monoclonal antibody, is a target therapy for breast cancer cells with over expression of HER2-neu receptors, but it is an expensive drug with only 20% beneficial rate of survival. This study introduces a novel approach to enhance the efficacy of this drug through immunoconjugation of the antibody to botulinum toxin. Decreasing the cost and adverse effects of the antibody were secondary goals of this study. Materials and Methods: Botulinum toxin was conjugated with Herceptin using heterobifunctional cross linkers, succinimidyl acetylthiopropionate (SATP) and sulfo-succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) according to the supplier's guidelines and tested on two breast cancer cell lines: SK-BR-3 and BT-474. Toxin and Herceptin were also used separately as controls. The cytotoxicity assay was also performed using the new bioconjugate on cultured cells with Alamar blue and a fluorescence plate reader. Results: Herceptin-Toxin bioconjugation significantly improved Herceptin efficacy on both breast cancer cell lines when compared to the control group. Conclusions: Toxin-Herceptin bioconjugation can be a potential candidate with increased efficiency for treating breast cancer patients with over expression of the HER2 receptor.

Preparation and stability of N-terminal PEGylated Recombinant Human Epidermal Growth Factor

  • Na, Dong-Hee;Youn, Yu-Seok;Park, Chong-Jeon;Lee, Sang-Deuk;Lee, Kang-Choon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.415.3-416
    • /
    • 2002
  • To improve the stability of recombinant human epidermal growth factor (rhEGF) as therapeutic agent. the N-terminal PEGylated rhEGF (N-PEG-rhEGF) was prepared by site-specific bioconjugation and the stability was investigated in rat skin wound homogenates. Two different N-PEG-rhGEFs (N-PEG5K- and N-PEG20K-rhEGF) were successfully prepared with the yields of above 70%. The PEGylation site was directly confirmed by determining the molecular mass of Lys-C digested samples using MALDI- TOF MS. (omitted)

  • PDF

Characterizations of Novel Poly(aspartic acid) Derivatives Conjugated with γ-Amino Butyric Acid (GABA) as the Bioactive Molecule

  • Kim, Seung-Il;Son, Chang-Mo;Jeon, Young-Sil;Kim, Ji-Heung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3025-3030
    • /
    • 2009
  • Novel poly(aspartic acid) derivatives conjugated with $\gamma$-amino butyric acid, GABA, moieties, and their amphiphilic analogs were synthesized and characterized. The chemical structures of these polymers were confirmed by FT-IR and $^1H$ NMR spectroscopy. Their physicochemical properties in aqueous media were characterized by electrophonetic light scattering spectrophotometry (ELS), acid-base titration, and UV-spectroscopy. In addition, the in vitro cell activity of the GABA-conjugated polymer was examined. These results indicated that GABA-conjugated poly(aspartic acid) derivatives showed cell-growth activity and nanoparticle formation of a suitable size within aqueous media. These polymers have potential application in the cosmetic and pharmaceutical fields.

Antiapoptotic Fusion Protein Delivery Systems

  • Tan, Cheau Yih;Kim, Yong-Hee
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.481-488
    • /
    • 2008
  • Apoptosis is a natural cell suicide mechanism to maintain homeostasis. However, many of the diseases encountered today are caused by aberrant apoptosis where excessive apoptosis leads to neurodegenerative disorders, ischemic heart disease, autoimmune disorders, infectious diseases, etc. A variety of antiapoptotic agents have been reported to interfere with the apoptosis pathway. These agents can be potential drug candidates for the treatment or prevention of diseases caused by dysregulated apoptosis. Obviously, world-wide pharmaceutical and biotechnology companies are gearing up to develop antiapoptotic drugs with some products being commercially available. Polymeric drug delivery systems are essential to their success. Recent R&D efforts have focused on the chemical or bioconjugation of antiapoptotic proteins with the protein transduction domain (PTD) for higher cellular uptake with antibodies for specific targeting as well as with polymers to enhance the protein stability and prolonged effect with success observed both in vivo and in vitro. All these different fusion antiapoptotic proteins provide promising results for the treatment of dysregulated apoptosis diseases.