• Title/Summary/Keyword: Biodegradation

Search Result 1,031, Processing Time 0.03 seconds

Biodegradation Capacity Utilization as a New Index for Evaluating Biodegradation Rate of Methane

  • Kim, Tae Gwan;Yi, Taewoo;Yun, Jeonghee;Ryu, Hee Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.715-718
    • /
    • 2013
  • Density of catalytic organisms can determine the biodegradation capacity and specific biodegradation rate (SBR). A new index, biodegradation capacity utilization (BCU, %), was developed for estimating the extent of actual biodegradation of a gas compound over the full capacity. Three methanotrophic cultures were serially diluted (1-1/25), and methane SBR and BCU were measured. Consistently, biomass reduction increased the SBR and decreased the BCU. Linearity (p < 0.05, r > 0.97) between the BCU and cell density indicated the reflection of biodegradation capacity by BCU. Therefore, BCU is indicative of whether the density of catalytic organisms is pertinent for SBR evaluation of low-soluble gaseous compounds.

Determination of Biodegradation Rate on Dichlorvos and Methidathion (Dichlorvos와 methidathion의 생분해율의 측정)

  • Min, Kyung-Jin;Cha, Chun-Geun
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.36-43
    • /
    • 1999
  • The present study was performed to investigate biodegradation rate of dichlorvos and methidathion. In the biodegradation test of two pesticides by the modified river die-away method from June 17 to August 22, 1998, the biodegradation rate constants and half-life were determined in Nakdong(A) and Kumho River(B). Biodegradation rate of dichlorvos was 4.51% in A sampling point, 6.88% in B sampling point after 7 days. Biodegradation rate constants and half-life of dichlorvos were 0.0066 and 105 days in A sampling point, 0.0102 and 67.9 days in B sampling point, respectively. Biodegradation rate of methidathion was 23% in A sampling point, 36% in B sampling point after 7 days. Biodegradation rate constants and half-life of methidathion were 0.0377 and 18.4 days in A sampling point, 0.0641 and 10.8 days in B sampling point, respectively. Biodegradation rate of methidathion was faster than that of dichlorvos. This suggested that the difference in biodegradation of pesticides was due to difference in the water quality and standard plate counts in the Nackdong and Kumho Rivers. The result of correlation analysis between biodegradation rate constants of the pesticides and water quality(DO, BOD, SS, ABS, NH$_3$-N, and NO$_3$-N) showed significant correlation with BOD, SS and NH$_3$-N at the 5% significant level. A significant linear equation was obtained from regression analysis at the 5% significant level, whereas, dependent variables were BOD, SS and NH$_3$-N, and the biodegradation rate constant was independent variable. It is suggested that dichlorvos will be mainly degraded by hydrolysis, and for methidathion was both hydrolysis and biodegradation. A significant QSAR equation was obtained from regression analysis at the 10% significant level, whereas, dependent variable is biodegradation rate constants of BPMC, chlorothalonil, dichlorvos and methidathion, vapor pressures, partition coefficients and water solubilities of the pesticides are independent variables. Also, a significant linear equation was obtained from regression analysis at the 1% significant level, whereas, dependent variable is biodegradation rate constants of BPMC, chlorothalonil, dichlorvos and methidathion, hydrolysis rate constants of the pesticides are independent variables. It is suggested that the pesticides will be degraded by main degradation factor when the pesticides was affected both hydrolysis and biodegradation.

  • PDF

Characteristics of Municipal Sewage Sludge Affecting the Biodegradation of a Plastic Material Under Aerobic Condition (호기적 조건에서 플라스틱 생분해에 영향을 미치는 도시 하수 오니의 성질)

  • Seo, In-Sun;Lee, Myung-Cheon;Kim, Byung-Hong;Shin, Pyong-Kyun
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.436-442
    • /
    • 1994
  • The characteristics of activated sludge affecting the biodegradation of plastic materials under aerobic condition were studied using cellophane film as a model system. The activated sludges of site 3, which treat a mixture of domestic sewage and supernatant of septic tank, obtained from December 1993 to April 1994 showed similar biodegradation activities. Biodegradations for 28 days reached around 80%. Viable cell number of inoculums maintained at a level of 10$^{6}$~10$^{7}$ /ml. In this range, viable cell number showed no relationship with biodegradation activities. The activa- ted sludges of site 2, which treat a mixture of domestic sewage and anaerobic digest of nightsoil, obtained four times from April 1993 to April 1994 showed very different biodegradation activities ranged from 20% to 80% for 28 days. Inoculum size affects biodegradation significantly. One percent inoculum showed the best biodegradation among the inoculum sizes of 0.1, 1.0 and 10%. Ten percent inoculum revealed inhibitory effects on the biodegradation activity which can be greatly reduced by centrifugation and filtration. Filtration was better than centrifugation in reducing inhibitory effects.

  • PDF

Effects of Various Parameters on Biodegradation of Degradable Polymers in Soil

  • Shin, Pyong-Kyun;Jung, Eun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.784-788
    • /
    • 1999
  • The effects of pH, moisture content, and the relative amount of a polymer sample on the biodegradation of degradable polymers in soil were studied using various polymer materials such as cellulose, poly-(butylene succinate-co-adipate) (SG) polycaprolactone (PCL), a blend of PCL and starch (PCL-starch), and a poly-lactic acid (PLA). As with other materials, the polymers degraded faster at a neutral pH than at either acidic or basic conditions. Moisture contents of 60 and 100% water holding capacity exhibited a similar biodegradability for various polymers, although the effects differed depending on the polymer. For synthetic polymers, biodegradation was faster at 60%, while the natural polymer (cellulose) degraded faster at 100%. Fungal hypae was observed at a 60% water holding capacity which may have affected the biodegradation of the polymers. A polymer amount of 0.25% to soil revealed the highest biodegradability among the ratios of 0.25, 0.5, and 1%. With a higher sample amount, the residual polymer could be recovered after the biodegradation test. It was confirmed that a test for general biodegradation condition can be applied to plastic biodegradation in soil.

  • PDF

Enhanced reutilization value of shrimp-shell waste via fed-batch biodegradation with higher production of reducing sugar, antioxidant, and DNA protective compounds

  • Rashid, Harun Ar;Jung, Hyun Yi;Kim, Joong Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.10
    • /
    • pp.33.1-33.11
    • /
    • 2018
  • As a process for commercial application, production of reducing sugar, antioxidant, and DNA protective compounds from shrimp-shell powder was investigated in a fed-batch biodegradation using Bacillus cereus EW5. The fed-batch biodegradation was operated in a 5-L bioreactor for 96 h according to three times pulse-feeding strategy. On the basis of the equal working volume (3 L), the fed-batch biodegradation showed a better production of the target compounds than the batch biodegradation, with higher cell density and shortened biodegradation period. The maximum values of the target compounds were 0.297 mg/mL of reducing sugar, 92.35% DPPH radical scavenging activity, 98.16% ABTS radical scavenging activity, and 1.55 reducing power at $A_{700}$, which were approximately 12.1, 3.4, 5.2, and 8.4% enhanced, respectively, compared with those obtained from the batch biodegradation. The fed-batch culture supernatant also showed the enhanced DNA damage inhibition activity than the batch culture supernatant. As a result, the fed-batch biodegradation accompanied by high cell density could produce more useful compounds, enabling an increase in the reutilization value of shrimp-shell waste.

The Effect of Nonionic Surfactants on the Solubility and Biodegradation of PAHs in Soil Slurry (PAHs의 용해도와 생분해에 미치는 비이온계 계면활성제의 영향)

  • 박종섭;김인수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.174-177
    • /
    • 1998
  • The effects of surfactants affecting polycyclic Aromatic Hydrocarbon(PAHs) solubility and biodegradation in soil slurry were investigated. The critical micelle concentration(CMC) values of surfactants used in this study were 12.7mg/L(Brij 30), 13.4mg/L(Tween 80), 13.6mg/t(Triton X-100). The solubility of PAH increased as the Hydrophile-Lipophile Balance(HLB) value of surfactant decrease. At surfactant biodegradation and toxicity experiement using respirometer, Brij 30 did not show any toxic effect and substrate inhibition upon the level of 1.5g/L. Also, biodegradation of Brij 30 gave no reduction on the phenanthrene biodegradation rate. When the desorption rate of phenanthrene between sand and clay is compared, lower percentage of phenanthrene was desorbed at clay because of the larger surface aera and higher organic content of clay. At the biodegradation experiments of phenanthrene in soil slurry phase, more than 90% of initial phenanthrene adsorbed onto both sand and clay were biodegraded by phenanthrene- acclimated cultures.

  • PDF

Effects of Temperature and Compost Conditions on the Biodegradation of Degradable Polymers

  • Jung, Eun-Joo;Shin, Pyong-Kyun;Bae, Hee-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.464-468
    • /
    • 1999
  • The effectiveness of current biodegradation test methods for degradable polymers under controlled composting conditions was studied in regards to the test temperature and compost condition. When biodegradability tests for the natural (starch, cellulose, PHB/HV) and synthetic (PCL, SG, PLA) polymers were conducted at temperature levels of 35 and $55^{\circ}C$ with compost cured at ambient temperature, the degradations of cellulose and starch were higher at $35^{\circ}C$ because of the priming effect. On the other hand, degradations of other polymers were higher at $55^{\circ}C$. In the biodegradation test at $55^{\circ}C$, compost harvested right after the thermophilic degradation stage showed higher biodegradation activities than the cured compost for both the synthetic aliphatic polyester (SG) and a natural polymer, cellulose. These results suggest that the biodegradation test conducted at $55^{\circ}C$ with the compost, harvested right after the thermophilic degradation stage during composting, showed the highest biodegradation activity under controlled composting conditions.

  • PDF

Determination of Biodegradation Rate on BPMC and Chlorothalonil (BPMC와 Chlorothalonil의 생분해율의 측정)

  • 민경진;차춘근
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.3
    • /
    • pp.249-254
    • /
    • 1999
  • The present study was performed to investigate biodegradation rate of BPMC(2-sec-butylphenyl methyl carbamate) and chlorothalonil. In the biodegradation test of two pesticides by the modified river die-away method from June 17 to August 22, 1998, the biodegradation rate constants and half-life were determined in Nakdong(A) and Kumho River(B). Bio- degradation rate of BPMC was 27% in A sampling point, 40% in B sampling point after 7 days. Biodegradation rate constants and half-life of BPMC were 0.0460 and 15.1 days in A sampling point, 0.0749 and 9.3 days in B sampling point, respectively. Biodegradation rate of chlorothalonil was 100% in A and B sampling points after 7 days. Biodegradation rate constants and half-life of chlorothalonil were 0.1416 and 4.9 hours in A sampling point, 0.1803 and 3.8 hours in B sampling point, respectively. Biodegradation rate of chlorothalonil was faster than that of BPMC. Correlation analysis between biodegradation rate constants of pesticides and water quality(DO, BOD, SS, ABS, $NH_3-N\;and\;NO_3-N$) showed significant correlation with BOD, SS and $NH_3-N$. Furthermore, regression analysis with BOD, SS and $NH_3-N$ as independent variable and biodegradation rate constant as independent variable showed a significant linear equation. These results suggested that BPMC and chlorothalonil were mainly degraded by biodegradation, and the difference in biodegradation of two pesticides was due to difference of water quality.

  • PDF

Primary and Ultimate Biodegradation of Dishwashing Detergents (주방용세제의 일차적 생분해도 및 최종적 생분해도)

  • Kim, Mann-Young;Choi, Ung-Su;Kim, Jae-Yong;Kim, Kwang-Ryul
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.558-563
    • /
    • 1993
  • To reveal the effect of synthetic detergent on the water pollution as a preliminary step, we measured the primary biodegradation and ultimate biodegradation with three kinds of dishwashing detergents being sold at market. Consequently, the primary biodegradation of above mentioned samples were suited to Korean Standards. Above all, the goods that has fast primary biodegradation shows the tendency to fast ultimate biodegradation.

  • PDF

Biodegradation of Synthetic Plastics (합성 플라스틱의 생분해)

  • Song, Yoon-Seok;Lee, Hee-Uk;Lee, Ja-Hyun;Choi, Han-Suk;Choi, Ung-Su;Kim, Seung-Wook
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.215-221
    • /
    • 2012
  • Synthetic plastics are important in many branches of industry. Although synthetic plastics provide numerous benefits, they also cause a significant environmental pollution problem because of their non-readily-biodegradability. Biodegradation may provide solution to the problem, but not enough is known about the biodegradation mechanisms of synthetic plastics. This review has been written to provide an overview of the current state of synthetic plastics (polyethylene, polyurethane, nylon, polyvinyl alcohol) biodegradation. Several biodegradation mechanisms of a few selected synthetic plastics are also presented.