• Title/Summary/Keyword: Biodiesel-ethanol blending

Search Result 8, Processing Time 0.022 seconds

An Experimental Study on the Combustion an Emission Characteristics with Injection Pressure of Biodiesel-Ethanol Blending Fuel in CVC (정적연소기 내 바이오디젤-에탄올 혼합연료의 분사압력에 따른 연소 및 배출가스에 관한 연구)

  • Eom, Dong-Seop;Park, Kyoung-Gyun;Dong, Yoon-Hee;Lee, Seang-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.150-156
    • /
    • 2010
  • Ethanol has properties of a lower setting point, higher oxygen contents, lower cetane numbers, and also higher volatility compared to biodiesel. Thus, biodiesel fuel can be improved in the fluidity of blending fuel and exhaust emissions by blended ethanol fuel. This research aims to understand combustion characteristics of biodiesel-ethanol blending fuel inside a constant volume chamber. High speed camera was applied to visualize the physics of development of combustion processes, and combustion pressure and exhaust emissions were measured at several blending ratios of ethanol and biodiesel fuel. This information may contribute to improve the performance of biodiesel engine and reduce emissions in future.

Spray and Combustion Characteristics of Biodiesel-Ethanol Blending Fuel (바이오디젤-에탄올 혼입연료의 분무 및 연소특성)

  • Eom, Dong-Seop;Choi, Yeon-Soo;Choi, Yong-Seok;Lee, Seang-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • Ethanol has properties of a lower setting point, higher oxygen contents, lower cetane numbers, and also higher volatility compared to biodiesel. Thus, biodiesel fuel can be improved in the fluidity of and exhaust emissions by blended ethanol fuel. This research aims to understand combustion characteristics of biodiesel-ethanol blending fuel inside a constant volume chamber by obtaining some fundamental data in order to improve combustion atmosphere. To understand the physics of combustion, high speed camera was applied to visualize the development of combustion processes, and combustion pressure and exhaust emission were measured at several blending ratios of ethanol and biodiesel fuel. This information may contribute to improve the performance of biodiesel engine and reduce emissions in future.

Effect of Ambient Conditions on the Spray Behavior and Atomization Characteristics of Biodiesel-ethanol Blended Fuels (분위기 조건이 바이오디젤과 에탄올 혼합연료의 분무 거동 및 미립화 특성에 미치는 영향)

  • Park, Su-Han;Kim, Hyung-Jun;Suh, Hyun-Kyu;Chon, Mun-Soo;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.180-186
    • /
    • 2008
  • The aim of this work is to investigate the effect of ambient conditions on the spray behavior of biodiesel-ethanol blended fuels. In order to analyze the spray behavior, spray tip penetration and spray cone angle were obtained from the visualization system and the effects of ethanol blending are compared macroscopic characteristics with the numerical results. It was reveled that the ethanol contents in biodiesel-ethanol blended fuels affect the spray tip penetration a little and increased the spray cone angle. Increased ambient pressure induced the decrease of the spray tip penetration, and the increased ambient temperature lead to the increase of the spray tip penetration. In addition, the increased ambient temperature promoted the vaporization and atomization of spray with the effect of increasing ethanol fuel.

  • PDF

Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Oxygenated Blending Fuel (압축착화 엔진에서 함산소 혼합연료의 연소 및 미세입자 배출물 특성)

  • Cha, June-Pyo;Yoon, Seung-Hyun;Chon, Moo-Soo;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.61-66
    • /
    • 2009
  • An experimental investigation was conducted to analyze the effects of biodiesel-ethanol and biodiesel-diesel blended fuels on the characteristics of combustion and exhaust emissions, and size distributions of particulate matter in a single cylinder diesel engine. The three types of test fuel were biodiesel and two blended fuels which were added ethanol and diesel by 20 % volume based fraction into biodiesel, respectively. In this study, the injection rate, combustion pressure, exhaust emissions and size distributions of particulate matter were measured under various injection timings and injection pressures. The experimental results show that biodiesel-ethanol blended fuel has lengthened ignition delay and low combustion pressure in comparison with those of biodiesel and biodiesel-diesel blended fuel even if all fuels indicated similar trends of injection rate under equal injection pressures. In addition, the ethanol blended fuel significantly reduced nitrogen oxidies (NOx) and soot emissions. And then the size distribution of particulate matters shows that blended fuels restrain the formation of particles which were beyond the range of 150nm comparison with biodiesel fuel.

Spray Characteristics of Biodiesel Fuel by Blending Bioethanol and Diesel Fuel in a Common Rail Injection System (커먼레일 분사시스템에서 바이오에탄올 및 디젤연료 혼합 바이오디젤의 분무 특성)

  • Park, Su-Han;Suh, Hyun-Kyu;Kim, Hyung-Jun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.82-89
    • /
    • 2009
  • In order to investigate the spray characteristics according to diesel and bioethanol blending with biodiesel fuel, macroscopic spray characteristics were analyzed from the comparison of the effect of the injection pressure, ambient pressure and density on the spray tip penetration and spray cone angle. In addition, spray atomization characteristics were studied with local and overall Sauter mean diameter (SMD) and the contour map of SMD distribution at various injection conditions. It was revealed that the spray tip penetration of biodiesel fuels blended with diesel and ethanol was shorter than that of an undiluted biodiesel fuel at low injection pressure. However, the difference of spray tip penetration among three test fuels reduces at a high injection pressure. Increase of the ambient gas density leads to the decrease of the spray tip penetration of three test fuels. When diesel and ethanol fuels add to an undiluted biodiesel fuel, spray cone angle increases due to the decrease of the fuel density at the same ambient pressure condition. On the other hand, the droplet mean diameter decreases due to the reduction of the kinematic viscosity and surface tension.

A Review on Spray Characteristics of Bioethanol and Its Blended Fuels in CI Engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.155-166
    • /
    • 2014
  • This review will be concentrated on the spray characteristics of bioethanol and its derived fuels such as ethanol-diesel, ethanol-biodiesel in compression ignition (CI) engines. The difficulty in meeting the severe limitations on NOx and PM emissions in CI engines has brought about many methods for the application of ethanol because ethanol diffusion flames in engine produce virtually no soot. The most popular method for the application of ethanol as a fuel in CI engines is the blending of ethanol with diesel. The physical properties of ethanol and its derivatives related to spray characteristics such as viscosity, density and surface tension are discussed. Viscosity and density of e-diesel and e-biodiesel generally are decreased with increase in ethanol content and temperature. More than 22% and 30% of ethanol addition would not satisfied the requirement of viscosity and density in EN 590, respectively. Investigation of neat ethanol sprays in CI engines was conducted by very few researchers. The effect of ambient temperature on liquid phase penetration is a controversial topic due to the opposite result between two studies. More researches are required for the spray characteristics of neat ethanol in CI engines. The ethanol blended fuels in CI engines can be classified into ethanol-diesel blend (e-diesel) and ethanol-biodiesel (e-biodiesel) blend. Even though dodecanol and n-butanol are rarely used, the addition of biodiesel as blend stabilizer is the prevailing method because it has the advantage of increasing the biofuel concentration in diesel fuel. Spray penetration and SMD of e-diesel and e-biodiesel decrease with increase in ethanol concentration, and in ambient pressure. However, spray angle is increased with increase in the ethanol percentage in e-diesel. As the ambient pressure increases, liquid phase penetration was decreased, but spray angle was increased in e-diesel. The increase in ambient temperature showed the slight effect on liquid phase penetration, but spray angle was decreased. A numerical study of micro-explosion concluded that the optimum composition of e-diesel binary mixture for micro-explosion was approximately E50D50, while that of e-biodiesel binary mixture was E30B70 due to the lower volatility of biodiesel. Adding less volatile biodiesel into the ternary mixture of ethanol-biodiesel-diesel can remarkably enhance micro-explosion. Addition of ethanol up to 20% in e-biodiesel showed no effect on spray penetration. However, increase of nozzle orifice diameter results in increase of spray penetration. The more study on liquid phase penetration and SMD in e-diesel and e-biodiesel is required.

A Study on the Spray-atomization Characteristics of Diesel-ethanol Blended Fuels in a High Pressure Diesel Injection System (디젤 고압 분사 시스템에서 디젤-에탄올 혼합연료의 분무 및 미립화 특성에 관한 연구)

  • Kim, Se-Hun;Park, Su-Han;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.80-87
    • /
    • 2010
  • The purpose of this paper is to analyze the effects of ethanol blending ratio and fuel temperature in diesel-ethanol blended fuel on the spray-atomization characteristics in a high pressure common-rail injection system. In this work, a diesel fuel and three blended fuels were used as test fuels. Blended fuels were made by blending ethanol with a purity 99.9% to diesel fuel, from 0% to 30%. In order to keep diesel-ethanol blending stability, 5% of biodiesel fuel as volumetric ratio was added into test fuels. The fuel temperature was controled in steps with 40K, from 290K to 370K. Macroscopic spray characteristics were investigated by analyzing the spray tip penetration and spray cone angle through spray images obtained from visualization system. In addition, in order to study microscopic spray characteristics of ethanol blended fuels, the droplet diameter, was analyzed using the droplet measuring system. It is revealed that the spray tip penetration is similar regardless of ethanol blending ratio. As ethanol blending ratio is increased, the spray cone angle becomes wider. It is shown that the spray cone angle is affected by low viscosity and density of ethanol. As the fuel temperature increases, the spray tip penetration and spray cone angle become shorter and narrower respectively. The SMD of ethanol blending fuels is smaller than that of diesel fuel because of low viscosity and surface tension of ethanol.

A Study on the Spray and Combustion Characteristics of Diesel-ethanol-biodiesel Blended Fuels in a Diesel Engine (디젤엔진에서 디젤-에탄올-바이오디젤 혼합연료의 분무 및 연소 특성에 관한 연구)

  • Park, Su-Han;Youn, In-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.76-84
    • /
    • 2010
  • The aim of this study is to analyze the effect of the ethanol blending in diesel-ethanol blended fuels on the spray and combustion characteristics in a common-rail four-cylinder diesel engine. For the analysis of the spray characteristics, the spray images were obtained using a high speed camera with metal-halide lamps. From these spray images, the macroscopic spray characteristics such as the spray tip penetration and spray cone angle were investigated. Also, the combustion characteristics including the combustion pressure and the rate of heat release were studied with the analysis of the exhaust emissions in diesel-ethanol blended fuel driven diesel engine. It can be confirmed from the experiment on spray characteristics of diesel-ethanol blended fuels that the increased ethanol blending ratio induced the decrease of the spray tip penetration after the end of the injection. The spray cone angle slightly increased by the blending of ethanol fuel. In the experiment on atomization characteristics, the ethanol blending caused the improvement of the diesel atomization performance. On the other hand, at the same engine load condition, the increase of the ethanol blending ratio lead to lengthen the ignition delays, and to decrease the peak combustion pressure and the rate of heat release. Totally, the combustion and emission characteristics of ULSD and DE10 showed similar characteristics. However, in the case of DE20, CO and HC rapidly increased, and $NO_x$ decreased. It can be believed that 20% ethanol disturbed the combustion of diesel-ethanol blended fuel due to the low cetane number and evaporation.