• Title/Summary/Keyword: Biofiltration

Search Result 143, Processing Time 0.024 seconds

Kinetics of the Biofilter Treating Gasoline Vapor (가솔린 휘발가스의 바이오필터 처리에 관한 동력학적 연구)

  • Park, Joon-Seok;Namkoong, Wan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.70-76
    • /
    • 2001
  • Proper design and improvement of the biofiltration process depend upon quantitative understanding of the kinetic behavior in the biofilter. This study was conducted to evaluate kinetics of biofiltration of gasoline vapor. Filling material of the biofilter was compost. Gas inlet concentration ranged from about $300mg/m^3$ to $7,000mg/m^3$. Gas velocities were 6m/hr and 15m/hr, respectively. At 6m/hr gas velocity, about 60% of gasoline TPH below $3,000mg/m^3$ was removed in the lower quarter part of the biofilter. First order kinetics described well the degradation rate of gasoline TPH with high correlation. First order kinetic removal constant at the gas velocity of 6m/hr was higher than that of 15m/hr from about $300mg/m^3$ to $7,000mg/m^3$. When the inlet concentration was over $3,000mg/m^3$, first order kinetic removal constant at the gas velocity of 6m/hr was over twice that at 15m/hr. In order to obtain over 80% of removal efficiency, gasoline vapor should be injected into the biofilter at concentration below about $2,000mg/m^3$, 100cm filling height and the gas velocity of 6m/hr.

  • PDF

Effects of Slurry Composting and Biofiltration Liquid Fertilizer on Growth Characteristic of Poplar Clones in a Reclaimed Land Mounding Soil (간척지 성토지 식재 포플러의 SCB액비 처리에 따른 클론별 생장특성)

  • Park, Jung-Hyun;Yeo, Jin-Kie;Koo, Yeong-Bon;Lee, Won-Woo;Kim, Hyun-Chul;Park, Chi-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.318-323
    • /
    • 2008
  • We studied on the effects of slurry composting and biofiltration liquid fertilizer (SCBLF) on growth of two-year-old poplar clones planted in a reclaimed land mounding soil. The soil on the experimental site had lower concentrations of both exchangeable cations and salinity than before reclamation. However, the content of organic matter was low compared with the most soils. We applied SCBLF to the poplars six times and 5 L in each time for 80 days. Ten clones of six poplar species or hybrids were tested in this study: Populus alba ${\times}$ P. glandulosa(Clivus, 72-30, 72-31, Bongwha1), P. deltoides ${\times}$ P. nigra(Dorskamp), P. deltoides(Lux) ${\times}$ P. deltoides(Harvard)(97-19), P. euramericana(Eco28, I-476), P. nigra ${\times}$ P. maximowiczii(62-2) and P. Koreana ${\times}$ P. nigra var. italica(Suwon). Growth performance varied more among clones than among species. Average height growth of treated plots was 18% greater than control, and clones Clivus, 97-19, Eco28 and Dorskamp were more vigorous than other clones. Diameter at breast height in treated plots was 41% greater than control, and 97-19, Dorskamp, Eco28 and Clivus were the four best clones in this respect. Mean leaf area of treated trees was 26% greater for control trees. Chlorophyll content was similar between treated and controlled trees. Total nitrogen values in leaves were much higher in treated trees 18%. SCBLF treatment on poplars planted in reclaimed land helped tree growth.

Removal of VOCs Using Nylon 6 fiber media Immobilized with Microorganisms (Nylon 6 fiber media를 이용한 Biofilter의 VOCS의 제거)

  • Kim, Jang-ho;Park, Dong-won;Kim, Hyoung-ho
    • Clean Technology
    • /
    • v.9 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • Biofiltration was successfully applied to treat a mixture of volatile organic compounds(benzene, xylene) from contaminated air stream. Immobilized Ps. oleovorans biofilter was evaluated for its value in simultaneous removal of benzene and xylene from waste air stream. The variety of operating conditions were tested to evaluate important factors such as space velocity, pH, water content, etc.

  • PDF

Influence of Temperature on Degradation for volatile organic compounds (VOCs) by Biofiltration. (생물여과에 의한 휘발성 유기화합물의 분해에 미치는 온도의 영향)

  • 윤인길;이성훈;박창호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.411-412
    • /
    • 2000
  • 산업의 발달과 더불어 각종 화학물질들이 여러 산업공정에서 다양한 용도로 이용되고 있다. 인체에 유해한 독성 무기ㆍ유기화합물의 유출 사고나 부적절한 매립 등에 의해 이들 물질이 환경오염을 야기하는 것으로 보고되고 있다. 휘발성 유기화학물의 처리는 물리ㆍ화학적 방법이나 생물학적 방법으로 제거할 수 있다. 생물여과 공정은 오염된 가스를 반응기에 유입하여 고정된 충진물에 형성된 적절한 미생물 층을 이용하여 오염물질을 제거하는 것이다(Deshusses et al., 1995). (중략)

  • PDF

Dairy Manure Composting and Ammonia Gas Biofiltration - Using Coconut Peels- (유우분의 퇴비화 및 암모니아가스의 생물학적 탈취 - 코코넛 껍질의 이용 -)

  • 박금주;홍지형;최원춘
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.07a
    • /
    • pp.321-326
    • /
    • 2002
  • 축산업의 규모가 커짐에 따라 가축분뇨의 발생이 집중화되고 있으며 이 축산폐기물은 올바르게 처리하지 않을 경우 대기 및 수질환경의 오염원이 될 수 있다. 축산농가에서는 분뇨처리의 문제가 가축사육의 중요한 부분으로 대두되고 있다. 가축분뇨를 퇴비화 처리하는 과정에서 발생하는 암모니아가스는 악취의 주요성분을 이루고 있을 뿐만 아니라 퇴비 내에 존재하는 질소성분을 밖으로 유출하는 결과를 초래한다. 따라서 퇴비화하는 과정에서 악취발생의 저감과 또한 발생된 악취의 탈취는 퇴비 내에 포함되어 있는 질소 비료성분의 유출을 방지하고 작업장의 불쾌감과 환경오염을 방지한다는 측면에서 매우 중요한 과제이다. (중략)

  • PDF

A study on the Reclamation and Reuse of Milk Manufacturing Wastewater (유가공폐수 처리수의 재이용에 관한 연구)

  • 곽필재;우달식;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.111-119
    • /
    • 1997
  • We met the continued population growth, contamination of both surface and groundwaters, deficiency of water resources, and increase of water demand. Wastewater reclamation and reusing system are important facilities in water resources planning aspect. The required water quality for reclamed wastewater varies with each application. This study was conducted to examine the possibilities of the wastewater reclamation and reusing on milk manufacturing wastewater. Biofiltration could reduce the COD$_{Cr}$, NH$_{3}$-N. Turbidty was reduced highly by coagulation. In conclusion, we identified the possibilities of wastewater reclamation and reusing on milk manufacturing wastewater's by biological activated carbon filter.

  • PDF

Performance of a Biofilter for Odor Removal during Manure Composting

  • Park, K.J.;Hong, J.H.;Choi, M.H.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • Odor generated during composting of livestock manure is mainly due to ammonia emission. Biofiltration is a desirable method to control composting odor. This study was conducted to analyze the efficiency of using fresh compost as a biofilter. A mixture of cattle manure and recycled compost was composted in a bin equipped with a suction-type blower. The exhaust gas was filtered through the fresh compost. Residence time was controlled by the flow rate of exhaust gas and the depth of filtering materials. At the aeration rate of 30 L/min(experiment I), ammonia reduction rate varied from 100% to -15% for biofilter A(residence time 56.5 s) and almost 100% for biofilter B(residence time 113 s). At the aeration rate of 30 L/min, the cumulative ammonia reduction rate was 80.5% for biofilter A and 99.9% for biofilter B. At the aeration rate of 50 L/min(experiment II), the lowest reduction rate showed a negative value of -350% on the 8th and 9th day for biofilter A(residence time 33.9 5), and 50% on the loth day for biofilter B(residence time 67.8s). At the aeration rate of 50 L/min, the cumulative ammonia reduction rate was 82.5% fur biofilter A and 97.4% for biofilter B. Filtering efficiency was influenced by residence time. The moisture content(MC) and total nitrogen(T-N) of the filtering material were increased by absorbing moisture and ammonia included in the exhaust gas, while pH was decreased and total carbon(T-C) remained unchanged during the filtering operation.

  • PDF

Treatment of Benzene Vapor Gas with Compost and Calcium Silicate Porous Biofilters (퇴비 및 규산칼슘계 다공성 바이오필터의 벤젠휘발가스 처리)

  • Park, Joon-Seok;Namkoong, Wan;Kim, Sun-A;Park, Young-Goo;Lee, Noh-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.21-27
    • /
    • 2005
  • This study was conducted to evaluate the biofiltration treatment characteristic for benzene vapor gas. Compost and calcium silicate porous material were used as biofilter fillers. Gas velocity and empty bed retention time were 15 m/hr and 4 min, respectively. Benzene gas removal efficiency of P-Bio (calcium silicate porous material with inoculation) was the highest and maintained in over 98%. After shock input of benzene gas, the removal efficiency of P-Bio biofilter was recovered within 2 days, while 5 days were taken in CP-Bio (compost + calcium silicate porous material mixture with inoculation) and CP (compost + calcium silicate porous material mixture without inoculation) biofilters. The removal efficiency of P-Bio biofilter was near 100% in the loading rate of <$85g/m^3$(filling material)/hr, It was shown that the maximum elimination capacities of P-Bio, CP-Bio, and CP biofilters were 95, 69, and $66\;g/m^3$(filling material)/hr, respectively. Microbial number of P-Bio, which the number was the lowest at start-up, was 3 orders increased on operational day 48. $CO_2$ was generated greatly in order of P-Bio, CP-Bio, and CP biofilters.

Simultaneous Biofiltration of H2S, NH3 and Toluene using an Inorganic/Polymeric Composite Carrier

  • Park, Byoung-Gi;Shin, Won-Sik;Chung, Jong-Shik
    • Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.19-27
    • /
    • 2008
  • Simultaneous removal of ternary gases of $NH_3$, $H_2S$ and toluene in a contaminated air stream was investigated over 180 days in a biofilter. A commercially available inorganic/polymeric composite chip with a large void volume (bed porosity > 0.80) was used as a microbial support. Multiple microorganisms including Nitrosomonas and Nitrobactor for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for $H_2S$ removal and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) ranged from 60 - 120 seconds and the inlet feed concentration was $0.0325\;g/m^3-0.0651\;g/m^3$ for $NH_3$, $0.0636\;g/m^3-0.141\;g/m^3$ for $H_2S$, and $0.0918\;g/m^3-0.383\;g/m^3$ for toluene, respectively. The observed removal efficiency was 2% - 98% for $NH_3$, 2% - 100% for $H^2S$, and 2% - 80% for toluene, respectively. Maximum elimination capacity was about $2.7\;g/m^3$/hr for $NH_3$, > $6.4\;g/m^3$/hr for $H_2S$ and $4.0\;g/m^3$/hr for toluene, respectively. The inorganic/polymeric composite carrier required 40 - 80 days of wetting time for biofilm formation due to the hydrophobic nature of the carrier. Once the surface of the carrier was completely wetted, the microbial activity became stable. During the long-term operation, pressure drop was negligible because the void volume of the carrier was two times higher than the conventional packing materials.