• Title/Summary/Keyword: Biological control of meloidogyne incognita

Search Result 18, Processing Time 0.026 seconds

Plant Growth Promotion and Suppression of Root Disease Complex due to Meloidogyne incognita and Fusarium oxysporum by Fluorescent Pseudomonads in Tomato

  • Kumar, Tarun;Bajpai, Vivek K.;Maheshwari, Dinesh Kumar;Kang, Sun-Chul
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.79-83
    • /
    • 2005
  • While screening for nematicidal activity of bacterial origins, various pseudomonads strains were inhabited in tomato rhizosphere. One isolate designated as $PE_{10}$ was selected for studies on nematicidal properties and plant growth-promoting (PGP) activity and was identified as Pseudomonas aeruginosa based on morphological features, biochemical and physiological tests, and carbohydrate utilization. To investigate nematicidal activity, Meloidogyne incognita juvenile mortality was determined using $PE_{10}$ culture filtrate. Inhibition of strain $PE_{10}$ against Fusarium oxysporum was observed using dual culture technique. Strain $PE_{10}$ showed good siderophore activity, HCN and IAA production abilities, and growth and development enhancement of tomato.

Nematicidal activity of Korean native plants against root-knot nematode, Meloidogyne incognita (고구마뿌리혹선층(Meloidogyne incognita)에 대한 국내 자생식물의 살선충 활성)

  • Lim, Sang-Hyun;Zhu, Yang-Ze;Kim, Mi-Sung;Lee, Yu-Sun;Son, Jeong-Sik;Park, Dong-Sik;Hur, Jang-Hyun;Kim, Hee-Yeon;Choi, Hae-Jin;Kim, Kyung-Hee;Kim, Song-Mun
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.4
    • /
    • pp.353-357
    • /
    • 2004
  • Large economic losses have been reported by root-knot nematide, Meloidogyne incognita, in Korea. However, fewy environmentally-friendly nematicide alternatives for the control of M. incognita have been developed. This study was conducted of Korean native plants to screen nematicidal activity which could be used by organic farmers. Methanol extracts (1,000 mg $L^{-1}$) from fifty-three Korean native plants were applied to 24-well tissue culture testplates containing $1\times10^2$ M incognita and the nematicidal activities were determined. Nematicidal activities of the methanol extracts in common purslain (Portulaca oleraceae L.) and water mouse-ear-chickweed (Stellaria aquatica Scop.) were 60.0% and 40.6%, respectively, compared with that of control, however, those of other forty-one plants were less than 30%. Our results suggest that the methanol extracts of common purslain and water mouse-ear-chickweed contain nematicidal active compounds.

Biological Control of Mulberry Root Knot Nematode Meloidogyne incognita by Trichoderma harzianum

  • Sukumar, J.;Padma, S.D.;Bongale, U.D.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.2
    • /
    • pp.175-179
    • /
    • 2004
  • Trichoderma harzianum-THN1 parasitising the egg masses of root knot nematode Meloidogyne incognita was isolated from galled mulberry roots and evaluated for its potential to control root knot disease. In pot experiments root galling was reduced and leaf yield increased significantly following soil treatment with T. harzianum-THN1. The extracts obtained from the soils inoculated with T. harzianum-THN1 drastically inhibited the hatching of nematode eggs and the effect was irreversible even after the eggs were transferred to fresh water. The fungus was equally effective in controlling the disease in nematode infested mulberry garden under field conditions which was significant over the most commonly used egg parasitic fungus Paecilomyces lilacinus. The disease reduction recorded with T. harzianum was on par with the plants treated with the nematicide Carbofuran. The results suggest that T. harzianum- THN1 could be used as a potent ecofriendly biocontrol agent against M. incognita in mulberry without any residual toxicity to silkworms. T. harzianum- THN1 can form an important component of integrated disease management package in mulberry cultivation.

Nematocidal Effect of B. thuringiensis subsp.indiana Strain BtTH109 on Root-Knot Nematode of Tomato (Bacillus thuringiensis subsp. indiana BtTH109의 토마토 뿌리혹선충에 대한 치사효과)

  • 이광배;김광현
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.679-684
    • /
    • 1994
  • For a biological control of root-knot nematode (Meloidogyne incognita) in tomato, efficiency of Bacillus thuringiensis subsp. indiana strain TH109 (BtTH109) on the nematode control was investigated. After the mixture of strain BtTH109 and wheat bran was treated into rhizosphere of the tomato plants with nematode eggs, the stem height and root growth of plants increased. And the juveniles and eggs of nematode are not found in both roots of tomatoes and pot soil after cultured broth of the strain BtTH109 treated 4 times at 3 day-interval into rhizosphere of the infected tomatoes.

  • PDF

Bacterial Mixture from Greenhouse Soil as a Biocontrol Agent Against Root-Knot Nematode, Meloidogyne incognita, on Oriental Melon

  • Seo, Byoung-Joo;Kumar, V.J. Rejish;Ahmad, Rather Irfan;Kim, Byung-Chun;Park, Wan;Park, So-Deuk;Kim, Se-Eun;Kim, Sang-Dal;Lim, Jeong-Heui;Park, Yong-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.114-117
    • /
    • 2012
  • The biological control efficacy of a greenhouse soil bacterial mixture of Lactobacillus farraginis, Bacillus cereus, and Bacillus thuringiensis strains with antinematode activity was evaluated against the root-knot nematode Meloidogyne incognita. Two control groups planted in soil drenched with sterile distilled water or treated with the broad-spectrum carbamate pesticide carbofuran were used for comparison. The results suggest that the bacterial mixture is effective as a biocontrol agent against the root-knot nematode.

Control Effect of Sudan Grass on Root-Knot Nematode, Meloidogyne incognita, in Cucumber and Lettuce Greenhouses (오이와 상추 재배지에서 수단그라스를 이용한 Meloidogyne incognita의 방제 효과)

  • Kim, Hyeong-Hwan;Kim, Dong-Hwan;Yang, Chang-Yeol;Kang, Taek-Jun;Han, Kyung-Sook;Park, Hae-Woong;Jung, Young-Hak;Jeon, Sung-Wook;Song, Jin-Sun;Choo, Ho Yul
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.264-269
    • /
    • 2014
  • The effect of biological control of the root-knot nematode, Meloidogyne incognita, on cucumber and lettuce was evaluated with green manure crop species in greenhouse. Nematicidal effect of sudan grass cultivation in cucumber greenhouse was comparable to that of chemical treatment with fosthiazate GR, showing the high activity of 88.6%. Sudan grass cultivation in lettuce greenhouse significantly reduced the number of M. incognita in soil, showing 93.5% of nematiidal activity. In addition, since growth of sudan grass was superior to other green manure crop species, it is considered that cultivation of sudan grass is proper to control M. incognita in greenhouse.

Suppression of Meloidogyne incognita in Lettuce and Oriental Melon by Pasteuria penetrans KW1

  • Lim, Chun-Keun;Yu, Yong-Man;Cho, Myoung-Rea;Zhu, Yong-Zhe;Park, Duck-Hwan;Hur, Jang-Hyun
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.177-180
    • /
    • 2003
  • Pasteuria penetrans KW1 (PP), parasitic bacterium of nematode, was isolated from oriental melon greenhouse soil in Korea and evaluated for the suppression effect on the reproduction of southern root-knot nematode, Meloidogyne incognita (MI), in lettuce (Lactuca sativa L. var. Chungchima) and oriental melon (Cucumis melo L. var. Eunchun). Pot experiments were conducted by planting the lettuce seedlings in medium inoculated with 5,000 MI juveniles/pot (J), J +100,000 PP endospores/l g medium, and J +200,000 PP endospores/1 g medium. After 11 weeks of plantation, number of root galls in J +200,000 PP endospores/1 g medium was decreased to 92/root (38.9%, control effect), compared to the J of 150/root. In the second plantation of lettuce in the same pots, the numbers of root gall were significantly decreased in PP treated pots with 75 (77.2%, control effect) and 150/root (54.4%, control effect) in J +200,000 and J +100,000 PP endospores/1 g medium, respectively, compared to the J of 330/root when harvested at 10 weeks after planting. In oriental melon, root gall percentages were 32.1 (60.2%, control effect) and 52.9% (34.5%, control effect) in J +200,000 and J + 1(10,000 endospores/l g medium which were significantly lower than that of 80.7% in J.

Control Effect of Root-knot Nematode (Meloidogyne incognita) by Biological Nematicide (생물학적 살선충제의 뿌리혹선충 (Meloidogyne incognita) 방제 효과)

  • Park, Moon-Hyun;Walpola, Buddhi Charana;Kim, Sun-Joong;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.162-168
    • /
    • 2012
  • An nematophagous fungi Arthrobotrys thaumasia Nema-1 and Bacillus subtilis C-9, which degrade the collagen and gelatin, were isolated from horticulture plantation soil in Kyungpook Sungju-gun Seonnam-myun and Chungnam Gongju-gun Woosung-myun to develop biological nematode pesticide. When $5,000mg\;kg^{-1}$ of A. thaumasia Nema-1 nematicide powder ($7.0{\times}10^3cfu\;g^{-1}$) was treated to pot including Meloidogyne incognita, the number of nematode's egg mass, which is a index of nematicidal activity, decreased to 35% compared to control. While the number of nematode's egg mass decreased to 67% by treating the nematicide powder mixture of $5,000mg\;kg^{-1}$ Nema-1 and B. subtilis C-9 ($8.5{\times}10^5cfu\;g^{-1}$). Furthermore the number of nematode's egg mass of the mixture containing cinnamon extract $10mg\;kg^{-1}$, each $5,000mg\;kg^{-1}$ of Nema-1 and C-9 nematicide powder was decreased to 84%, comparing to the result showed the number of nematode's egg mass decreased to 24%, by the treatment of chemical nemato pesticide Fosthiazate $24mg\;kg^{-1}$. These results suggested the mixture of microorganisms and plant extract was more effective biological nematicide than the case of only microorganism or plant extract for nematode control.

Antifungal, Nematicidal and Antioxidant Activity of the Methanol Extracts Obtained from Medicinal Plants

  • Nguyen, Dang Minh Chanh;Seo, Dong-Jun;Park, Ro-Dong;Jung, Woo-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.199-204
    • /
    • 2013
  • The nematicidal, antifungal and antioxidant activities of methanol extracts from six Vietnamese native medicinal plants were evaluated by various assays in vitro. Of the plant extracts tested, Terminalia nigrovenulosa was found to possess the highest activity when compared to the others. The leaves and bark of T. nigrovenulosa showed strong inhibitory activity against Meloidogyne incognita and Fusarium solani. The DPPH (1,1-Diphenyl-2-picryl-hydrazyl) radical scavenging, reducing power and total antioxidant activities of T. nigrovenulosa bark were higher than that of the remainder plant extracts. Chitinase activity of these plants was also investigated using SDS-PAGE. The results obtained in the present study indicate that T. nigrovenulosa leaf extracts are the greatest potential source as nematicides and fungicides for the control of M. incognita and F. solani. In particularly, T. nigrovenulosa bark extracts could be used as a potential source of commercially viable levels of natural antioxidant.

Nematicidal activity of Glycyrrhiza uralensis Fisch. root extracts on Meloidogyne incognita eggs and juveniles

  • Dang-Minh-Chanh Nguyen;Thi-Hoan Luong;Van-Viet Nguyen;Woo-Jin Jung
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.388-393
    • /
    • 2023
  • This study evaluated the in vitro nematicidal activity of Glycyrrhiza uralensis root extracts (GuRE) on Meloidogyne incognita eggs and juveniles. The results showed that treatment of M. incognita eggs with 2.0 mg/mL GuRE for 5 and 10 d resulted in 64.0 and 68.1% hatch inhibition, respectively. Furthermore, the relative mortality of J2 was 96.2% after treatment with 2.0 mg/mL GuRE for 48 h. Changes in the shape of the eggs and juveniles were determined after incubation with 2.0 mg/mL GuRE for 5 d and 48 h, respectively. These preliminary results suggest that GuRE can be used as an environment-friendly bio-nematicide to control root-knot nematodes. In the future, in vivo assays should be conducted using GuRE to ascertain its potential for widespread application as a nematicide.