• Title/Summary/Keyword: Biomass co-firing

Search Result 29, Processing Time 0.238 seconds

Status and Perspective of Biomass Co-firing to Pulverized Coal Power Plants (미분탄 석탄화력발전에서의 바이오매스 혼소 동향 및 전망)

  • Yang, Won
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.525-529
    • /
    • 2016
  • Biomass co-firing to existing thermal power plants is one of the most economical and efficient way to reduce $CO_2$ emission from the plant. There are several methods of co-firing and it can be categorized into (1) Parallel co-firing, (2) Indirect co-firing, and (3) Direct co-firing. Parallel co-firing is the most expensive way to high-ratio co-firing because it requires biomass dedicated boiler. Direct co-firing is widely used because it does not need high capital cost compared with the other two methods. Regarding the direct co-firing, it can be classified into three methods- Method 1 does not need retrofit of the facilities because it uses existing coal mills for pulverizing biomass fuels. In this case high-ratio co-firing cannot be achieved because of poor grindability of biomass fuels. Method 2 needs biomass-dedicated mills and revision of fuel streams for the combustion system, and Method 3 needs additional retrofit of the boiler as well as biomass mills. It can achieve highest share of the biomass co-firing compared with other two methods. In Korea, many coal power plants have been adopting Method 1 for coping with RPS(Renewable portfolio standards). Higher co-firing ratio (> 5% thermal share) has not been considered in Korean power plants due to policy of limitation in biomass co-firing for securing REC(Renewable Energy Certificate). On the other hand, higher-share co-firing of biomass is widely used in Europe and US using biomass dedicated mills, following their policy to enhance utilization of renewable energy in those countries. Technical problems which can be caused by increasing share of the biomass in coal power plants are summarized and discussed in this report. $CO_2$ abatement will become more and more critical issues for coal power plants since Paris agreement(2015) and demand of higher share of biomass in the coal power plants will be rapidly increased in Korea as well. Torrefaction of the biomass can be one of the best options because torrefied biomass has higher heating value and grindability than other biomass fuels. Perspective of the biomass torrefaction for co-firing is discussed, and economic feasibility of biomass torrefaction will be crucial for implementation of this technology.

Evaluation of Plant Performance during Biomass Co-firing in Pulverized Coal Power Plant (미분탄화력발전에서의 바이오매스 혼소 시 플랜트 성능특성 평가)

  • Mun, Tae-Young;Tefera, Zelalem Tumsa;Lee, Uendo;Lee, Jeung Woo;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.8-17
    • /
    • 2014
  • The aims of this research were to evaluate effects of biomass co-firing to pulverized coal power plants and the variation of co-firing ratios on the plant efficiency related to power consumption of auxiliary system and flue gas characteristics such as production and component by process simulation based on the existing pulverized coal power plant. In this study, four kinds of biomass are selected as renewable fuel candidates for co-firing: wood pellet(WP), palm kernel shell(PKS), empty fruit bunch(EFB) and walnut shell(WS). Process simulation for various biomass fuels and co-firing ratios was performed using a commercial software. Gas side including combustion system and flue gas treatment system was considering with combination of water and steam side which contains turbines, condenser, feed water heaters and pumps. As a result, walnut shell might be the most suitable as co-firing fuel among four biomass since when 10% of walnut shell was co-fired with 90% of coal on thermal basis, flue gas production and power consumption of auxiliary systems were the smallest than those of other biomass co-firing while net plant efficiency was relatively higher than those of other biomass co-firing. However, with increasing walnut shell co-firing ratios, boiler efficiency and net plant efficiency were expected to decrease rather than coal combustion without biomass co-firing.

Combustion Technology for Low Rank Coal and Coal-Biomass Co-firing Power Plant (저급탄 석탄화력 및 석탄-바이오매스 혼소 발전을 위한 연소 기술)

  • Lee, Donghun;Ko, Daeho;Lee, Sunkeun;Baeg, Guyeol
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.129-132
    • /
    • 2013
  • The low rank coal combustion and biomass-coal co-firing characteristics were reviewed on this study for the power plant construction. The importance of using low rank coal(LRC) for power plant is increasing gradually due to power generation economy and biomass co-firing is also concentrated as power source because it has carbon neutral characteristics to reduce green-house effect. The combustion characteristics of low rank coal and biomass for a 310MW coal firing power plant and a 100MW biomass and coal co-firing power plant were studied to apply into actual power plant design and optimized the furnace and burner design.

  • PDF

Influence of Biomass Co-firing on a Domestic Pulverized Coal Power Plant In Terms of CO2 Abatement and Economical Feasibility (다양한 바이오매스 혼소시 국내 미분탄화력에 미치는 이산화탄소 감축 및 경제성 영향 분석)

  • Kim, Taehyun;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.14-22
    • /
    • 2017
  • Co-firing of renewable fuel in coal fired boilers is an attractive option to mitigate $CO_2$ emissions, since it is a relatively low cost option for efficiently converting renewable fuel to electricity by adding biomass as partial substitute of coal. However, it would cause reducing plant efficiency and operational flexibility, and increasing operation and capital cost associated with handling and firing equipment of renewable fuels. The aim of this study is to investigate the effects of biomass co-firing on $CO_2$ emission and capital/operating cost. Wood pellet, PKS (palm kernel shell), EFB (empty fruit bunch) and sludge are considered as renewable fuels for co-firing with coal. Several approaches by the co-firing ratio are chosen from previous plant demonstrations and commercial co-firing operation, and they are evaluated and discussed for $CO_2$ reduction and cost estimation.

Combustion Characteristics of Coal and Wood Biomass Co-Firing on the Pulverized Coal Combustion Furnace (목질계 바이오매스와 유연탄의 혼합 연소특성에 관한 연구)

  • Kim, Sung-Chul;Lee, Hyun-Dong;Kim, Jae-Gwan
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.293-298
    • /
    • 2006
  • There are many researches in progress on co-firing of coal and biomass to reduce carbon dioxide produced from the coal consumption. This study carried out 200 Kg/h combustion test furnace by mixing coal with timber. Coal was mixed with domestic and imported-wood around 10% to 20% based on input energy. For the mixed fuel, combustion temperature, unburned carbon and the composition of flue gas were analyzed. In addition, the tendency of slagging and fouling was examined using a probe. According to the result of the experiment, combustion temperature was depended on the kind of wood and mixing ratio. The unburned carbon loss was higher with increase of wood biomass mixing ratio, as a result, the total heat loss of furnace was slightly increased. The emission of NOx and SOx were decreased by $3{\sim}20%$ and $21{\sim}60%$ respectively. There are no difference of slagging and fouling tendency between biomass co-firing and coal burning only.

  • PDF

High-Temperature Corrosion Characterization for Super-Heater Tube under Coal and Biomass Co-firing Conditions (석탄-바이오매스 혼소에 따른 슈퍼히터 튜브 고온 부식 특성 연구)

  • Park, Seok-Kyun;Mock, Chin-Sung;Jung, Jin-Mu;Oh, Jong-Hyun;Choi, Seuk-Cheun
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.79-86
    • /
    • 2018
  • Many countries have conducted extensive studies for biomass co-firing to enhance the durability of reactor on high-temperature corrosion. However, due to the complicated mechanisms of biomass co-firing, there have been limitations in accurately determining the current state of corrosion and predicting the potential risk of corrosion of power plant. In order to solve this issue, this study introduced Lab-scale corrosion system to analyze the corrosion characteristics of the A213 T91 material under the biomass co-firing conditions. The corrosion status of the samples was characterized using SEM/EDS analysis and mass loss measurement according to various biomass co-firing conditions such as corrosion temperature, $SO_2$ concentration, and corrosion time. As a result, the corrosion severity of A213 T91 material was gradually increased with the increase of $SO_2$ concentration in the reactor. When $SO_2$ concentration was changed from 0 ppm to 500 ppm, both corrosion severity and oxide layer thickness were proportionally increased by 15% and 130%, respectively. The minimum corrosion was observed when the corrosion temperature was $450^{\circ}C$. As the temperature was increased up to $650^{\circ}C$, the faster corrosion behavior of A213 T91 was observed. A213 T91 was observed to be more severely corroded by the effect of chlorine, resulting in faster corrosion rate and thicker oxide layer. Interestingly, corrosion resistance of A213 T91 tended to gradually decrease rather than increases as the oxide layer was formed. The results of this study is expected to provide necessary research data on boiler corrosion in biomass co-firing power plants.

A Study on Characteristics of Combustion and Thermo Pyrolysis in Co-firing with Pulverized Coal and Wood Biomass (미분탄과 목재 바이오매스 혼합 연료의 연소 및 열분해 특성에 관한 연구)

  • An, Jae-Woo;Ahn, Seong-Yool;Moon, Cheor-Eon;Sung, Yon-Mo;Seo, Sang-Il;Kim, Tae-Hyung;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.34-40
    • /
    • 2010
  • The effect of co-firing with pulverized coal and wood biomass on ignition and burn-out temperature was investigated at air and oxy-fuel conditions by thermo gravimetric analyzer(TGA). Three kinds of coal(shenhua, adaro, wira) were selected and mixing ratios of coal and wood biomass was set to 1, 0.5, and 0.8. The ignition temperature depended on the amount of volatile matter of blended fuel, while the burn-out temperature was dominated by the oxidant ingredients. The oxy-fuel condition with an oxygen ratio(Ofr,o) of 0.3 showed similar tendency with air condition in the heat flow measurement. Volatile matter reaction, however, became dominant when oxygen ratio exceeded 0.8 for co-firing combustion of wood biomass and pulverized coal.

Combustion Charateristics of Biomass Blends on a 15KW Pulverized Coal furnaces (15kW급 미분탄 연소로내에서 바이오매스 혼소율 변화에 따른 연소 특성 비교)

  • Lee, Sangmin;Sung, Yonmo;Choi, Minsung;Moon, Cheoreon;Choi, Gyungmin;Kim, Duckjool
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.41-44
    • /
    • 2014
  • This study focused on the effect of the biomass blended ratio on air-staged pulverized coal furnace. The hybrid NOx reduction technology between fuel blending and air staging has been applied in an air-staged pulverized coal fired furnace. The results indicated that co-firing biomass with coal could reduce NOx emissions in an air-staged combustion. In addition, carbon burnout and flame temperature increased under the air-staged condition. A dominant synergistic effect on NOx reduction and carbon burnout was observed when biomass co-firing with coal was applied in air staged combustion.

  • PDF

Experimental Investigation into the Combustion Characteristics on the Co-firing of Biomass with Coal as a Function of Particle Size and Blending Ratio (바이오매스(우드펠릿) 혼소율 및 입자크기에 따른 연소 특성에 관한 연구)

  • Sh, Lkhagvadorj;Kim, Sang-In;Lim, Ho;Lee, Byoung-Hwa;Kim, Seung-Mo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Co-firing of biomass with coal is a promising combustion technology in a coal-fired power plant. However, it still requires verifications to apply co-firing in an actual boiler. In this study, data from the Thermogravimetric analyzer(TGA) and Drop tube furnace(DTF) were used to obtain the combustion characteristics of biomass when co-firing with coal. The combustion characteristics were verified using experimental results including reactivity from the TGA and Unburned carbon(UBC) data from the DTF. The experiment also analyzed with the variation of the biomass blending ratio and biomass particle size. It was determined that increasing the biomass blending ratio resulted in incomplete chemical reactions due to insufficient oxygen levels because of the rapid initial combustion characteristics of the biomass. Thus, the optimum blending condition of the biomass based on the results of this study was found to be 5 while oxygen enrichment reduced the increase of UBC that occurred during combustion of blended biomass and coal.

Effect of Biomass Co-firing Ratio on Operating Factors of Pulverizer in 500 MW Coal-fired Power Plant (500 MW 석탄화력 발전소에서 바이오매스 혼소율이 미분기 운전인자에 미치는 영향)

  • Geum, Jun Ho;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.18 no.3
    • /
    • pp.28-40
    • /
    • 2022
  • As the proportion of renewable energy generation is expected to increase, public power generation businesses need to actively consider implementing the expansion of biomass mixing, In this study, the biomass co-firing rate is being changed from 0wt.% to 5.0wt.% at 500MW coal-fired power plant, measuring the major operation characteristics of the pulverizer. First, the composition analysis and grinding characteristics of lignocelluosic biomass were examined, and the effect of volume increase on dirrerential bowl pressure difference, motor current, coal spillage, outlet temperature, and internal fire count was analyzed. As the co-firing rate increased, it was confirmed that the difference in the differential bowl pressure, motor current, and coal spillage treated increased, and the outlet temperature was minimal. The number of internal fires is difficult to find a clear correlation, but it has been confirmed that it is highly likely to occur in combination with other driving factors.

  • PDF