• Title/Summary/Keyword: Biomechanics

Search Result 1,631, Processing Time 0.025 seconds

Publication Metrics and Subject Categories of Biomechanics Journals

  • Duane Victor Knudson
    • Journal of Information Science Theory and Practice
    • /
    • v.11 no.4
    • /
    • pp.40-50
    • /
    • 2023
  • Research in interdisciplinary fields like biomechanics is published in a variety of journals whose visibility depends on bibliometric indexing that is often driven by citation analysis of bibliometric databases. This study documented variation in publication metrics and research subject categories assigned to 14 biomechanics journals. Authors, citation, and citation rate (CR) were collected for the top 15 cited articles in the journals retrieved from the Google Scholar service. Research subject categories were also extracted for journals from three databases (Dimensions, Journal Citation Reports, and Scopus). Despite the focus on biomechanics for the journals studied, these biomechanics journals have widely varying CR and subject categories assigned to them. There were significant (p=0.001) and meaningful (77-108%) differences in median CR between average, low, and high CR groups of these biomechanics journals. Since CR are primary data used to calculate most journal metrics and there is no one biomechanics subject category, field normalization for journal citation metrics in biomechanics is difficult. Care must be taken to accurately interpret most citation metrics of biomechanics journals as biased proxies of general usage of research, given a specific database, time frame, and area of biomechanics research.

Active Linear Modeling of Cochlear Biomechanics Using Hspice

  • Jarng Soon Suck;Kwon You Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3E
    • /
    • pp.77-86
    • /
    • 2005
  • This paper shows one and two dimensional active linear modeling of cochlear biomechanics using Hspice. The advantage of the Hspice modeling is that the cochlear biomechanics may be implemented into an analog Ie chip. This paper explains in detail how to transform the physical cochlear biomechanics to the electrical circuit model and how to represent the circuit in Hspice code. There are some circuit design rules to make the Hspice code to be executed properly.

Biomechanical Analysis at the Start of Bobsleigh Run in Preparation for the 2018 Pyeongchang Winter Olympics

  • Park, Seungbum;Lee, Kyungdeuk;Kim, Daewoong;Yoo, Junghyeon;Jung, Jaemin;Park, Kyunghwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.4
    • /
    • pp.239-245
    • /
    • 2017
  • Objective: The bobsleigh shoes used in the start section are one of the most important equipment for improving the competition. Despite the importance of the start section, there are no shoes that are specific for bobsleigh athletes in Korea and Korean athletes have to wear sprint spike shoes and practice the start instead of wearing bobsleigh shoes. The objective of the present study was to provide data for improving the performance of Korean bobsleigh athletes by investigating the differences in their split time, plantar pressure, and forefoot bending angle based on skill levels at the start of a run under the same conditions as training conditions. Method: Six Korean bobsleigh athletes were divided into two groups, superior (n=3) and non-superior (n=3). A digital speedometer measured the split time at the start; the Pedar-X system (Novel, Germany) measured plantar pressure. Plantar pressures and split times were measured as the athletes pushed a bobsleigh and sprinted at full speed from the start line to the 10-m mark on the bobsleigh track. An ultra-high-speed camera was used to measure the forefoot bending angle during the start phase. Results: Significant between-group differences were found in split times (p<.000; superior = 2.38 s, non-superior = 2.52 s). The superior group had a larger rearfoot (p<.05) contact area, maximum rearfoot force (p<.01), and a larger change in angles 3 and 4 (p<.05). Conclusion: At the start of a bobsleigh run, proper use of the rearfoot for achieving effective driving force and increasing frictional resistance through a wider frictional force can shorten start time.

Effects of Factors on Response Variables Lap Time and Lower Extremity Range of Motion in Bobsleigh Start using Bobsleigh Shoes for the 2018 PyeongChang Winter Olympics

  • Park, Seungbum;Lee, Kyungdeuk;Kim, Daewoong;Yoo, Junghyeon;Jung, Jaemin;Park, Kyunghwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.219-227
    • /
    • 2017
  • Objective: The aim of this study was to analyze the effects of bobsleigh shoes on the lower extremity range of motion and start speed lap time and to develop bobsleigh shoes suitable for winter environments and Korean players based on sports science and optimized biomechanical performance. Background: The bobsleigh shoes used in the start section of the sport are one of the most important equipment for improving athletes' performances. Despite the importance of the start section, there are no shoes that are specifically designed for Korean bobsleigh athletes. Thus, Korean athletes have to wear sprint spike shoes instead of bobsleigh shoes to practice the start. Method: The subjects included four bobsleigh athletes from the Gangwon Province Bobsleigh Skeleton Federation. The study selected the bobsleigh shoe type A (company A) and type B (company B). We analyzed the lower extremity range of motion and sprint time (start line to 10 m) using a Motion Analysis System (USA). Results: In the measurement of the time required for the bobsleigh start section (10 m), the type A shoes demonstrated the fastest section record by $2.765{\pm}0.086sec$ and yielded more efficient movements, hip and knee flexion, hip extension, ankle dorsiflexion, plantar flexion, and inversion than the type B shoes. Conclusion: Type A shoes can yield a better performance via effective lower extremity movements in the bobsleigh start section. Application: In the future, functional analysis should be conducted by comparing the upper material properties, comfort, and muscle fatigue of bobsleigh shoes based on the Type A shoes to develop such shoes suitable for Koreans.

Comparative Analysis on Gait Patterns of the Elderly and the Young Regarding to Foot Pressure (고령자와 청장년층의 발바닥 압력분포에 따른 보행패턴 비교 분석)

  • Lee, Kyung-Deuk;Kim, Dae-Woong;Yoo, Jung-Hyeon;Kim, Kyung-Hun;Lee, Tae-Yong;Park, Kwang-Suk;Chung, Gih-Sung;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The purpose of this study was to find the difference in gait patterns when elderly and young people walk by analyzing COP, Gait Line, Foot pressure pattern, and ensuring the original biomechanics technology of developing high performance footwear for the elderly. The subjects who took part in the test consist of 20 elderly people and 20 young people. The physical features of the elderly people that were recruited for the study are as below: 20 healthy male subjects(elderly people) with an average age of 75.43 yrs(S.D 6.46 yrs), weight of 68.10 kg(S.D 0.94 kg) and a height of 168.65 cm(S.D 1.47 cm). Foot pressure pattern data was collected using a EMED-AT system(Novel Gmbh, Germany) operating at the 50 Hz during walking. The results are as follow : COP route of the elderly leans to lateral compared to the young, and Gait Line from heel to toe is not clear and laterally curved. At the same time, a contact are aonthe midfoot is high compared to the young, and maximum force of the forefoot is low. As a result of analysis, in order to develop high performance footwear for the elderly, it is necessary to develop lasts and soles reflecting the elderly's gait patterns.

Biomechanics of Anterior Cruciate Ligament (전방십자인대의 생역학)

  • Kyung, Hee-Soo
    • Journal of the Korean Arthroscopy Society
    • /
    • v.1 no.1
    • /
    • pp.9-19
    • /
    • 1997
  • Biomechanics of the soft tissue arc different from that of bone. Soft tissue has characteristics of nonhomogeneous, no-linear, anisotropic, viscoelastic, and finite deformation. Biomechanics of ACL, one of the soft tissue, are briefly described : structural and mechanical properties, viscoelastic response, immobilization, kinematics and static function.

  • PDF

Mathcad program as a useful tool for the teaching and studying the sport biomechanics (운동역학의 교육과 연구용 도구로서 Mathcad의 유용성)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.301-311
    • /
    • 2004
  • The purpose of this study was to verify the usefulness of the Mathcad program as a tool for the studying and teaching the sport biomechanics. A projectile motion was analyzed because it is the one of the most popular motion in sports activities. A 3 dimensional CG data for the high jump bar clear phase was used to calculate the initial velocity vector of the CG. Linear regression function and other functions such as cubic spline and derivative of Mathcad were used to calculate this vector. Finally, the approach angle to the bar and peak jump height was calculated. Programming in Mathcad was relatively easy compare to traditional computer language such as Fortran and C, because of the unique documentation method of Mathcad. Additionally the 2 and 3 dimensional graph function was very easy and useful to describe the mechanical data. If the use of Mathcad program is more popular in the field of sport biomechanics, it could greatly contribute to overcome the limit of research caused by the lack of proper programming ability.