• Title/Summary/Keyword: Bipolar Electrode

Search Result 94, Processing Time 0.026 seconds

The Influence of the Reference Electrode on Compound Muscle Action Potential Onset Latency and Amplitude (복합근육활동전위의 시작잠복기와 진폭에 대한 기준전극의 영향)

  • Lee, Sang-Moo;Choi, Heui-Chul;Son, Jong-Hee
    • Annals of Clinical Neurophysiology
    • /
    • v.12 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • Background: In belly-tendon (bipolar) montage, reference (R2) electrode placed on muscle's tendon has traditionally been considered to be electrically inactive. However, recent studies have revealed that R2 electrode is not simply referential, but actively contributes to compound muscle action potential (CMAP) waveform morphology. These findings suggest that CMAP onset latency and amplitude may also be influenced by the position of R2 electrode. This study was performed in order to evaluate the effect of R2 electrode position on CMAP onset latency and amplitude. Methods: We performed motor nerve conduction studies of median, ulnar, tibial and peroneal nerves on bilateral limbs of 20 normal subjects. We used traditional bipolar and monopolar montage and compared their CMAP onset latencies and amplitudes. In bipolar montage, recording (R1) electrode was placed on mid-belly of muscle with R2 electrode on the tendon of the muscle. In monopolar montage, R1 electrode was placed on the same site of bipolar montage, while R2 electrode was placed on the contralateral limb. Results: The mean CMAP onset latencies of median and peroneal nerves in bipolar montage were significantly different (p<0.05) with those in monopolar montage. And those of ulnar and tibial nerves were not significantly different (p>0.05). The mean CMAP amplitudes of all the tested nerves except ulnar nerve were significantly different (p<0.05). Conclusions: This study shows that change in R2 electrode position can affect the CMAP onset latency and amplitude, and these differences seem to be related to the generation of far field potential by CMAP.

Energy Efficiency Improvement of Vanadium Redox Flow Battery by Integrating Electrode and Bipolar Plate

  • Kim, Min-Young;Kang, Byeong-Su;Park, Sang-Jun;Lim, Jinsub;Hong, Youngsun;Han, Jong-Hun;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.330-338
    • /
    • 2021
  • An integral electrode-bipolar plate assembly, which is composed of electrode, conductive adhesive film (CAF) and bipolar plate, has been developed and evaluated for application with a vanadium redox flow battery (VRB) to decrease contact resistance between electrode and bipolar plate. The CAF, made of EVA (ethylene-vinyl-acetate) material with carbon black or CNT (Carbon Nano Tube), is applied between the electrode and the bipolar plate to enable an integral assembly by adhesion. In order to evaluate the integral assembly of VRB by adhesive film, the resistivity of integral assembly and the performance of single cell were investigated. Thus, it was verified that the integral assembly is applicable to redox flow battery. Through resistance and contact resistance of bare EVA and CAF films on bipolar plate were changed. Among the adhesive films, CAF film coated with carbon black showed the lowest value in through resistance, and CAF film coated with CNT showed the lowest value in contact resistance, respectively. The efficiency of VRB single cell was improved by applying CAF films coated with carbon black and CNT, resulting in the reduced overvoltage in charging process. Therefore, the energy efficiency of both CAF films, about 84%, were improved than that of blank cell, about 79.5 % under current density at 40 mA cm-2. The energy efficiency of the two cells were similar, but carbon black coated CAF improved the coulomb efficiency and CNT coated CAF improved the voltage efficiency, respectively.

Removal of COD and T-N caused by ETA from Nuclear Power Plant Wastewater using 3D Packed Bed Bipolar Electrode System (3D 복극충진전기분해를 이용한 원전 ETA에 의해 유발된 폐수 내 COD 및 T-N 제거)

  • Kim, Han-Ki;Jeong, Joo-Young;Shin, Ja-Won;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.409-421
    • /
    • 2012
  • Ethanolamine (ETA) is mainly used to prevent corrosion of pipe in secondary cooling system of nuclear power plant. Condensed ETA in wastewater could increase COD and T-N when it was emitted to natural water system. Compared to conventional treatments, electrochemical oxidation process using packed bed bipolar electrodes was adopted to treat COD and T-N. According to arrangement of feeder electrode, single packed bed bipolar electrode reactor and multi-paired packed bed bipolar reactor were developed and conventional zero-valent iron (ZVI) was selected as conducting bipolar electrode. Bipolar electrodes were coordinated three-dimensionally in the reactor. The experimental results showed that COD and T-N was little removed in unit system at different pH condition (pH 8 and 11) on 100V. However, in multi-paired system that applied 600V, COD was eliminated 80.85% (anode-cathode-anode, A-C-A) and 85.11% (cathode-anode-cathode, C-A-C), respectively. T-N was also removed 96.88% (A-C-A) and 90.63% (C-A-C), simultaneously. Current efficiency was estimated both single and multi-paired system. At unit bipolar packed bed reactor, current efficiency was almost zero, however in multi-paired system, current efficiency was 300~500% at A-C-A and 250~350% at C-A-C. Current efficiency was over 100% hence it was confirmed that this system is more effective than conventional electrochemical oxidation system.

A study on the analysis of bipolar packed-bed electrode reactor for complex reactions (복잡반응에 대한 복극성 고정층 전극반응기 해석)

  • Kim Hark-Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 1999
  • A mathematical analysis of bipolar electrode reactor model for complex electrochemical reactions could estimate total current from time-concentration data, which coincided well with experimental total current data. Thus behaviour of bipolar electrode reactor could be described by a proposed simulation model. This paper demonstrates how such a model can be used a useful tool in the design for pilot plant experimentation.

Advanced Lake Water Treatment with Bipolar Packed Bed Electrode Cell(II) (3차원 전극(Bipolar Packed Bed Electrode)을 이용한 호소수 처리(II))

  • 장철현;박상우;최창수
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.355-360
    • /
    • 2002
  • This study was to analyze the right of wrong of gray-water treatment by applying BPBE electrode cell to the effluence water in the terminal disposal plant of sewage. The results were as follows : The best result was obtained with applied voltage 40V and detention time 6 minutes for the BPBE electrode cell which has the graphite-plate in main electro-de, packing coconut activated carbon. The elimination rate of COD of Al-plate was higher than that of graphite-plate in main electrode. The result of electrolysis for 3 hour in parallel circuit showed the using possibility of gray-water according to each elimination rate : COD 59%, T-N 69 %, T-P 69%. The BPBE electrode cell with the Al-plate in main electrode made the best effect for the elimination of algae in lake water and algae were not occurred in electrolytic water.

Implementation of Wearable Heart Activity Monitoring System having Modified Bipolar Electrode and Correlation Analysis with Clinical Electrocardiograph(ECG) (수정된 바이폴라 전극을 갖는 착용형 심장활동 모니터링 시스템 구현 및 임상 심전도와의 상관관계 분석)

  • Lee, Kang-Hwi;Lee, Jeong-Whan;Lee, Young-Jae;Kim, Kyeong-Seop;Yang, Heui-Koung;Shin, Kun-Su;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1102-1108
    • /
    • 2008
  • Wearable physiological signal monitoring systems are regarded as an important sensing unit platforms in ubiquitous/mobile healthcare application. In this paper, we suggested the modified bipolar electrodes implemented on the portable heart activity monitoring system, which minimized the distance of electrodes formed on a attachable pad. The proposed electrode configuration is useful in mobile measurement environments, but has a disadvantage of reduced amplitude of the heart action potential. In order to overcome the shortcoming of the suggested electrode configuration, we implemented the amplifying circuit to increase the signal-gain and decrease the artifacts. For evaluations, we analyzed the specificity of measured cardiography using the proposed electrodes through the comparing of heart activity monitoring system with standard clinical ECG(lead2) by pearson correlation coefficients. The result showed that the average correlation coefficient is $0.903{\pm}0.036,\;0.873{\pm}0.072$ at V3, V4 chest lead position, respectively. Thus, the modified bipolar electrode is quite suitable to monitor the electrical activity of the heart in the situation of the mobile environment, and could be considered having high similarity with standard clinical ECG.

A study on the channel design of bipolar plate of electrolytic cell of hydrogen gas generation system by flow dynamic simulation (수소가스발생 장치의 전해조 분라판의 유로설계에 관한 전산모사 연구)

  • Jo, Hyeon-Hak;Jang, Bong-Jae;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.152-156
    • /
    • 2010
  • This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate of generated gas is the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL $Multiphysics^{TM}$ to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator.

The Behavior of Pellet Packed-bed Electrodes Reactor -Graphite Pellet Electrode- (펠레트 충전층 전극 반응기의 특성 -흑연 펠레트 전극-)

  • Kim, Hark-Joon
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.657-662
    • /
    • 1992
  • For describing the bipolar packed-bed electrode cell filled with graphite pellete electrode, the application of the model of equivalent circuit was studied. The ratio between the Faradaic current through bipolar electrodes and the applied current was dependent on the resistance coefficient, specific conductivity of electrolyte, and electrolyte circulation rate. The ratio of the Faradaic current through bipolar electrodes to the applied current increased with the applied current(or cell voltage), but decreased with the increase of electrolytic conductivity and circulation rate of the electrolyte.

  • PDF

A study on the channel design of bipolar plate of electrolytic cell by flow dynamic simulation in the two phase flow system (2상 흐름계에서 유로설계에 따른 전해조 분리판의 전산모사 연구)

  • Jo, Hyeon-Hak;Jang, Bong-Jae;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.415-420
    • /
    • 2010
  • This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate and flow pattern of generated gas in the two phase flow system are the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL MultiphysicsTM to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator and flow pattern of two phase fluid in the electrode. In this study, liquid electrolyte flows into the bipolar plate and decomposed into gas phase, two phase flow simulation is applied to measure the efficiency of hydrogen gas generation.

Influences of Inter-electrode Distance on Electrogastrography Measurements (위전도 측정을 위한 전극간 부착거리에 관한 연구)

  • Han, Wan-Taek;Song, In-Ho;Kim, In-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.341-346
    • /
    • 2009
  • Cutaneous electrogastrography is the measurement of electrical activity of the stomach on the abdominal surface. The validity of cutaneous electrogastrography is dependent upon the quality of the recording technique. The locations of electrodes are an important issue. We examined the influences of the inter-electrode distance of bipolar leads on electrogastrography measurements. The sensitivity distributions of EGG leads were calculated based on a 2D body fat model and evaluated according to the region of interest sensitivity ratio (ROISR). We simulated the ROISR of the inter-electrode distance in relation to various body fat thicknesses. The distance between the electrodes was proportional to the distance between the ROI and the surface of the abdomen. The results imply that inter-electrode distance can be applied in electrogastrography according to human body fat thickness.