• Title/Summary/Keyword: Birefringence Injection molding

Search Result 57, Processing Time 0.021 seconds

An Experimental Study on the Reduction of a Birefringence Distribution in LGP by Injection-Press Molding (형체압축성형을 이용한 도광판의 복굴절 저감효과에 관한 실험적 연구)

  • Min I. K.;Kim J. S.;Ko Y. B.;Park H. P.;Yoon K. H.;Hwang C. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.17-22
    • /
    • 2005
  • The residual birefringence in molded plastic parts can be divided into two kinds of residual birefringence, i.e., the flow induced residual birefringence produced in flowing stages and the thermally induced residual birefringence produced in cooling stage. In this paper, the effect of new injection-press molding process with normal injection mold, i.e. I) injection-compression mode, ii) injection-press mode, on the distribution of birefringence was studied. It was found that the values of the birefringence was reduced at i) low clamping force and ii) longer mold opening length by injection-press molding.

  • PDF

Numerical Analysis of Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (II) - Effects of Processing Conditions - (사출/압축 성형 Center-gated 터스크에서의 잔류 응력과 복굴절의 수치 해석 (II) - 공정조건의 영향 -)

  • Lee, Young-Bok;Kwon, Tai-Hun;Yoon, Kyung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2355-2363
    • /
    • 2002
  • The accompanying paper, Part 1, has presented the physical modeling and basic numerical analysis results of both the flow-induced and thermally-induced residual stress and birefringence in injection molded center gated disks. The present paper, Part II, has attempted to investigate the effects of various processing conditions of injection/compression molding process on the residual stress and birefringence. The birefringence is significantly affected by injection melt temperature, packing pressure and packing time. Birefringence in the shell layer increases as melt temperature gets lower. The inner peak of birefringence increases with packing time and packing pressure. On the other hand, packing pressure, packing time and mold wall temperature affect the thermally-induced residual stress rather significantly in the shell layer, but insignificantly in the core region. Injection/compression molding has been found to reduce the birefringence in comparison with the conventional injection molding process. In particular, mold closing velocity and initial opening thickness in the compression stage of injection/compression molding process have significant effect on the flow-induced birefringence, but not on tile thermal residual stress and the thermally induced birefringence.

The Effect of Various Molding Methods for Precision Optical Products Using Birefringence Analysis (정밀 광학부품의 복굴절 분석을 통한 각종 성형법의 영향에 관한 연구)

  • Min, I.K.;Cho, S.W.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • As the adoption of injection molding technology increases, injected-molded optical products require higher dimensional accuracy and optical stability than ever before. In the present study, four kinds of molding methods, i.e., conventional injection molding (CIM), injection/compression molding (ICM), rapid heat and cooling the mold(RHCM) and rapid injection/compression molding (RICM) were selected in order to investigate the optical anisotropy of a 7 inch Light Guide Plate(LGP) by examining the gap-wise distribution of birefringence and the extinction angle. The results indicate that the compression process can decrease flow-induced birefringence over the whole region and that rapid heating can decrease the birefringence level better than conventional molding. In addition, for the combination of compression and rapid heating a reversal flow was detected from the distribution of the extinction angle near the gate.

A Study on Influence of Parameters and Characteristics in the Injection Process on the Birefringence and Refractive Index for Pickup Lens (Pickup 렌즈의 사출조건이 복굴절 및 굴절율에 미치는 영향에 관한 연구)

  • Lee, Seung-Joon;Hyun, Dong-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.21-28
    • /
    • 2007
  • Injection molding process factors such as molding temperature, injection pressure, flow rate and flow velocity, must be controlled properly in filling and packing phases in the injection molding process. In this study, effects of these factors on the injection molding were investigated through the flow analysis for birefringence and refractive index for pickup lens. This paper presents the birefringence and refractive index reduced with increasing the holding pressure and also the holding pressure time. And there are interaction with birefringence and fill time in the injection process. The optimal conditions through DOE are validated by using injection molding analysis.

Improvement of Birefringence Characteristics of Injection-Molded Plastic Parts by Rapid Heating (급속 가열에 의한 사출성형품의 복굴절특성 개선)

  • Park, Keun;Kim, Byung-H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.195-198
    • /
    • 2007
  • The present work focuses on the prediction of birefringence in injection-molded plastic part and its improvement by rapid mold heating. To calculate birefringence, flow-induced residual stress is computed through a fully three-dimensional injection molding analysis. Then the stress-optical law is applied from which the order of birefringence can be evaluated and visualized. The birefringence patterns are predicted for a rectangular plate with a variation of mold temperatures, which shows that the amount of molecular orientation and birefringence level decreases with an increase of mold temperature. The effect of mold temperature on the order of birefringence is also studied for a thin-walled rectangular strip, and compared with experimental measurements. Both predicted and experimental patterns of birefringence are in agreements on the observation that the birefringence level diminishes significantly when the mold temperature is raised to above the glass transition temperature.

  • PDF

Finite Element Analysis of Injection/Compression Molding Process (사출압축성형 공정에 대한 유한요소 해석)

  • 이호상
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.180-187
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different process conditions including the variation of compression stroke and compression speed were carried out to understand their effects on birefringence variation. The simulated results were also compared with those by conventional injection molding.

An experimental study on the birefringence and extinction angle distribution in the injection/compression molded optical disk (사출/압축 성형된 광디스크 내의 복굴절 및 광축의 분포에 관한 연구)

  • Kim J. S.;Yoon K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.445-448
    • /
    • 2005
  • Recently, injection molding process became more popular than ever to produce large quantities of high precision products or optical products. Injection molding products can cause sensorial problems because of high birefringence or deformation from the residual stresses in the optical media. In the present study, we have focussed on the effect of holding and compression pressures on the optical anisotropy remaining in the MOD by examining the gapwise distribution of birefringence and extinction angle The effect of holding pressure was found to form the inner two birefringence peaks. But the effect of compression pressure on the birefringence distribution was found to make the uniform distribution near the center in the gap-wise direction. Finally, the value of the birefringence near the wall decreased as the mold temperature increased.

  • PDF

Measurement of Birefringence Distribution in Optical Disk Substrates Fabricated by Injection-Compression Molding (사출압축성형을 통한 광디스크 기판 성형 및 복굴절의 측정)

  • 김종성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.218-224
    • /
    • 1999
  • It is necessary to improve mechanical and optical properties in the optical disk substrates as the information storage devices with high storage density using short wavelength laser are being developed. Injection compression molding is regarded as the most suitable process to manufacture optical disk substrates with high is regarded as the most suitable process to manufacture optical disk substrates with high dimensional accuracy low residual stresses and superb optical properties In the present study polycarbonate optical disk substrates were fabricated by injection compression molding and the birefringence regarded as one of the most important optical properties for optical disk is measured. The effects of various processing conditions upon the development of birefringence distribution were examined experimentally. It was found that the value of the birefringence distribution were very sensitive to the mold wall temperature history and the variance of the birefringence distribution in the radial direction was affected by the level of the packing and the compression pressure.

  • PDF

Influence of Injection Molding Conditions on the Birefringence of Disks (사출성형 조건이 디스크의 복굴절에 미치는 영향)

  • Lee, Ho-Sang;Park, Min-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.28-33
    • /
    • 2010
  • A computer code was developed to simulate all three stages of the injection molding process: filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Based on the simulation, the Taguchi method was used to investigate the influences of injection molding conditions on the birefringence of a center gate disk. In addition, the optimal processing conditions were selected to minimize the birefringence and the birefringence difference along the positions of the disk.

Influences of Injection Molding Conditions on the Birefringence of a Disk (사출성형 조건이 디스크의 복굴절에 미치는 영향)

  • Park M.G.;Lee D.H.;Lee H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.305-309
    • /
    • 2005
  • A computer code was developed to simulate all three stages of the injection molding process ? filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Based on the simulation, the Taguchi method was used to investigate the influences of injection molding conditions on the birefringence of a center gate disk. In addition, the optimal processing conditions were selected to minimize the birefringence and the birefringence difference along the positions of the disk.

  • PDF