• 제목/요약/키워드: Blade failure

검색결과 117건 처리시간 0.029초

Failure Forecast Diagnosis of Small Wind Turbine using Acoustic Emission Sensor

  • Bouno Toshio;Yuji Toshifumi;Hamada Tsugio;Hideaki Toya
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.78-83
    • /
    • 2005
  • Currently in Japan, the use of the small wind turbine is an upward trend. There are already many well established small wind turbine generators in use and their various failures have been reported. The most commonly sighted failure is blade damage. Thus the research purpose was set to develop a simple failure diagnostic system, where an Acoustic Emission (AE) signal was produced from the failure part of a blade which was measured by AE sensor. The failure diagnostic technique was thoroughly examined. Concurrently, the damage part of the blade was imitated, the AE signal was measured, and a FFT(Fast Fourier Transform) analysis was carried out, and was compared with the output characteristic. When one sheet of a blade was damaged 40mm or more, the level was computed at which failure could be diagnosed.

항공기 가스터빈엔진 터빈블레이드의 고장률 예측에 관한 연구 (A Study on Failure Rate Prediction of Aircraft Gas Turbine Engine Turbine Blade)

  • 김천용;최세종
    • 한국항공운항학회지
    • /
    • 제27권4호
    • /
    • pp.21-26
    • /
    • 2019
  • The purpose of this study is to suggest a method for the efficient preventive maintenance of aircraft gas turbine engine turbine blades. For this study, the types and characteristics of gas turbine engines and its turbine blades were studied, the turbine blade defect types that caused an In-Flight Shut Down(IFSD) were analyzed, the blade failure rate according to the blade life cycle was analyzed through the Weibull distribution, one of the statistical techniques. Through these research results, it is possible to supplement the problems of the life cycle management and maintenance method of the turbine blade, and to suggest the measures to strengthen the preventive maintenance of the turbine blade. In this analysis, when total cycle of turbine blade exceeds 18,000 cycles, the failure rate is over 98%, and then the special management measures are required.

A review of wind-turbine structural stability, failure and alleviation

  • Rehman, Shafiqur;Alam, Md. Mahbub;Alhems, Luai M.
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.511-524
    • /
    • 2020
  • Advancements in materialistic life styles and increasing awareness about adverse climatic changes and its negative effects on human life have been the driving force of finding new and clean sources of energy. Wind power has become technologically mature and commercially acceptable on global scale. However, fossil fuels have been the major sources of energy in most countries, renewable energy (particularly wind) is now booming worldwide. To cope with this wind energy technology, various related aspects have to be understood by the scientific, engineering, utility, and contracting communities. This study is an effort towards the understanding of the (i) wind turbine blade and tower structural stability issues, (ii) turbine blade and tower failures and remedial measures, (iii) weather and seismic effects on turbine blade and tower failures, (iv) gear box failures, and (v) turbine blade and tower failure analysis tools.

진동 해석을 통한 300MW급 저압터빈 블레이드의 손상 원인 규명 (Identification of Failure Cause for 300MW LP turbine Blade through Vibration Analysis)

  • 김희수;배용채;이현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.794-799
    • /
    • 2005
  • The failure of blades frequently happened in the 300MW LP turbine until now and they are maintaining the blades periodically during outage. So the blade-disk system is analysed by FEM in order to identify the main cause of failure of blade row. It is found that the stress of root's hole is highest in comparison with other parts from the result of the steady stress analysis. Also, the two dangerous frequencies which is related to the resonance condition are found in the interference diagram. one is 1,516 Hz which is related to the operating speed. The other is 2,981 Hz which is related to the 1 nozzle passing frequency. The dynamic stress analysis is per-formed to identify more accurate root cause for failure of blade row. It is confirmed that the dynamic stress of the latter is higher than one of the former. From these results, it is concluded that the former has deeply something to do with the failure of blades more than the latter. Based on versatile investigation and deliberation, the change of blade's grouping is determined to avoid the resonance condition with the operating speed. After the blade grouping is changed, the former frequency vanish completely but the latter is still in existence in the interference diagram. Fortunately, It is confirmed that the dynamic stress of the new blade grouping is lower than one of the old blade grouping. 2 years has passed since modification and the LP turbine is operated well without failure so far.

  • PDF

진동 해석을 통한 300 MW급 저압터빈 블레이드의 손상 원인 규명 (Identification of Failure Cause for 300 MW LP Turbine Blade through Vibration Analysis)

  • 배용채;이현;김희수
    • 한국소음진동공학회논문집
    • /
    • 제15권9호
    • /
    • pp.1100-1107
    • /
    • 2005
  • The failure of blades frequently happened in the 300 MW LP(low pressure) turbine until now and they are maintaining the blades periodically during outage. So the blade-disk system is analysed by FEM in order to identify the main cause of failure of blade row. It is found that the stress of root's hole is highest in comparison with other parts from the result of the steady stress analysis. Also, the two dangerous frequencies which is related to the resonance condition are found in the interference diagram. One is 1,316 Hz. The other is 2,981 Hz which is related to the 1 nozzle passing frequency. The dynamic stress analysis is performed to identify more accurate root cause for failure of blade row It is confirmed that the dynamic stress of the former is higher than one of the latter From these results, it is concluded that the former has deeply something to do with the failure of blades more than the tatter. Based on versatile investigation and deliberation, the change of blade's grouping is determined to avoid the resonance condition with the operating speed. After the blade grouping is changed, the former frequency vanish completely but the latter is still in existence in the interference diagram. Fortunately, It is confirmed that the dynamic stress of the new blade grouping is lower than one of the old blade grouping. 2 years has passed since modification and the LP turbine is operated well without failure so far.

30MW 증기터빈 최종단 회전익 파단 사고 분석 (A Failure Analysis on the Broken Last Blade of 30MW Steam Turbine)

  • 김성봉;김인철;한승우;전채홍
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.5-15
    • /
    • 2007
  • In the recently released accident-investigation report on blade failure, almost 70% of blade failures was found at low pressure turbine blades, and it is well known that main cause is due to the vibration modes. This paper describes the systematic approach on the root cause of the blade failure at L 0 stage, 30MW single flow industrial steam turbine which had tripped by high vibration after ten-month commercial operation. A fracture was found at the only one damping wire hole of 59 blades, and crack was detected at three damping wire holes by NDT. According to the analysis result for the crack fracture surface and the chain of the sequential operational events, we come to the conclusion that a typical high cycle fatigue is the most dominant factor caused to the blade failure, the resonance frequency margin was narrowed by the cut damping wire and the high cycle vibration was amplified, and then the blade was broken at once by the centrifugal force when the crack reached the critical size.

  • PDF

풍력 블레이드에서 정적 이축하중 부하에 따른 거동 분석 (Analysis of Wind-Turbine Blade Behavior Under Static Dual-Axis Loads)

  • 손병직;허용학;김동진;김종일
    • 대한기계학회논문집A
    • /
    • 제36권3호
    • /
    • pp.297-304
    • /
    • 2012
  • 블레이드의 성능 평가를 위하여 실제 사용 환경과 근접한 하중 모사에 따른 이축 하중의 필요성이 제기되고 있으며, 본 본문에서는 이러한 이축 하중에 따른 블레이드의 거동을 해석하였다. 100kW급 풍력 블레이드를 대상으로 하였으며, ANSYS를 사용하여 정적거동을 분석하였다. 정적거동은 파손해석과 좌굴거동으로 분석하였으며, 파손 평가는 Puck이 제안한 파손 방정식을 이용하여 섬유 파손과 섬유간 파손 기준을 검토하였다. 이축하중의 하중비가 증가함에 따라 루트부 단면이 변하는 후연부와 루트에서 Z+ 3300~3600인 지점에서 응력이 상대적으로 크게 나타났다. 또한 이축 하중비가 증가함에 따라 블레이드 좌굴 지점이 루트부 쪽으로 이동되고 있음을 확인하였다. 따라서 블레이드의 사용 신뢰성을 검증하기 위해서는 이축 하중에 의한 시험이 요구되고 있음을 본 해석을 통해서 확인하였다.

엔진케이스의 블레이드 컨테인먼트 (Blade Containment)

  • 김지수;박기훈;성옥석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.414-417
    • /
    • 2011
  • 본 논문에서 Compressor 및 turbine 에서의 Blade failure등의 내부파손이 이를 둘러싸고 있는 케이스 내부에 머무르게 하는 엔진설계의 방법에 대한 이론 및 Simulation 등을 기술 하였다. 가장 무거운 부품 중에 하나인 케이스의 두께 최적화는, 항공기의 안정성뿐만 아니라 항공 효율을 높이기 위한 경량화의 목적을 위해서도 매우 중요한 설계목표 이다. 이러한 목적을 위하여 이론적 접근방법으로 에너지 밸런스 방법을 사용하였으며, 파손된 블레이드의 거동특성 및 영향성 평가를 위한 유한요소해석을 위하여 LS-DYNA가 사용 되어졌다.

  • PDF

2 MW급 풍력터빈 블레이드 설계 및 단방향 유체-구조연성해석 (Design of a 2MW Blade for Wind Turbine and Uni-Directional Fluid Structure Interaction Simulation)

  • 김범석;이강수;김만응
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.1007-1013
    • /
    • 2009
  • The purposes of this study are to evaluate the power performance through CFD analysis and structural integrity through uni-directional FSI analysis in aerodynamic design and structure design of wind turbine blade. The blade was designed to generate the power of 2MW under the rated wind speed of 11 m/s, consisting of NACA 6 series, DU series and FFA series airfoil. The inside section of the blade was designed into D-spar structure and circular stiffener was placed to reinforce the structural strength in the part of hub. CFD analysis with the application of transitional turbulence model was performed to evaluate the power performance of blade according to the change of TSR and 2.024MW resulted under the condition of rated wind speed. TSR of 9 produced the maximum power coefficient and in this case, Cp was 0.494. This study applied uni-directional FSI analysis for more precise evaluation of structural integrity of blade, and the results of fiber failure, inter fiber failure and eigenvalue buckling analysis were evaluated, respectively. For the evaluation, Puck's failure criteria was applied and the result showed that fiber failure and inter fiber failure did not occur under every possible condition of the analysis. As a result, power performance and structural integrity of 2 MW blade designed in this study turned out to satisfy the initial design goals.

X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구 (A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM)

  • 김성웅;홍순혁;전형용;조석수;주원식
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1645-1652
    • /
    • 2002
  • The failure analysis on fractured parts is divided into the qualitative method by naked eyes and metallurgical microscope etc. and the quantitative method by SEM and X-ray diffraction etc. X-ray fractography can be applied to contaminated surface as well as clean surface and gain the plastic deformation and the residual stress near the fractured surface. Turbine blade is subject to cyclic bending force by steam pressure and suffers fatigue damage according to the increasing operating time. Therefore, to clean up the fracture mechanism of torsion-mounted blade in nuclear plant, the fatigue and the X-ray diffraction test was performed on the 12%Cr steel fur turbine blade and the fractured parts. The correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade was predicted. Failure analysis was performed by contact stress analysis and Goodman diagram of torsion-mounted blade.