• Title/Summary/Keyword: Bleed Hole

Search Result 14, Processing Time 0.022 seconds

Heat/Mass Transfer Characteristics on Rotating Square Channel with Bleed Holes (유출홀이 설치된 회전하는 정사각 유로에서의 열/물질전달 특성)

  • Kim, Sang-In;Kim, Kyung-Min;Lee, Dong-Hyun;Lee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1104-1109
    • /
    • 2004
  • The present study has been conducted to investigate convective heat/mass transfer inside the cooling passage with bleed holes. The rotating square channel has 40.0 mm hydraulic diameter and the bleed holes on the leading surface of the channel. The hole diameter of bleed hole is 4.5 mm and its spacing (P/d=4.9) is about five times of hole diameter. Mass flow rate through bleed holes is 10% of the main flow rate and rotation number is changed form 0.0 to 0.4. A naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The cooling performance is influenced by mass flow rate through bleed holes and Coriolis force of rotating channel for fixed reynolds number. The heat transfer is enhanced around holes on the leading surface because of trapping flow by bleeding. However heat transfer on the leading surface is decreased due to Coriolis force.

  • PDF

Effect of Channel Rotation and Bleed Flow on Heat/Mass Transfer Characteristics in a 90° Ribbed Square Channel (채널회전 및 유출유동이 90도 요철이 설치된 사각채널 내 열/물질전달 특성에 미치는 영향)

  • Park, Suk-Hwan;Jeon, Yun-Heung;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.83-90
    • /
    • 2007
  • The present study investigated the effects of channel rotation and bleed flow on heat/mass transfer in a $90^{\circ}$ ribbed square channel. The bleed holes were located between the rib turbulators on the leading surface and those on the trailing surface case by case. The tests were conducted under the conditions of various bleeding ratios (0.0, 0.2, 0.4) and rotation numbers (0.0, 0.2, 0.4) at Re=10,000. The results suggested that heat/mass transfer characteristics were influenced by the Coriolis force, bleed flow and bleed hole location. The heat/mass transfer on the surface with bleed flow was more increased than that without bleed flow but that on the opposition surface was decreased. Those were due to the effects of the tripping flow and the diminution of main flow rate respectively. The results also showed that the heat/mass transfer characteristics were different according to bleed hole location and channel rotation.

Effects of Bleed Hole on Heat/Mass Transfer in a Rotating Channel with Transverse Ribs (90도 요철이 설치된 회전덕트에서 유출홀이 열/물질전달에 미치는 영향)

  • Park, Suk-Hwan;Jeon, Yun-Heung;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.178-184
    • /
    • 2005
  • The present study investigates the effects of bleed flow on heat/mass transfer and pressure drop in a rotating channel with transverse rib turbulators. The hydraulic diameter ($D_h$) of the square channel is 40.0 mm. The bleed holes are located between the rib turburators on leading surface and the hole diameter (d) is 4.5 mm. The square rib turbulators are installed on both leading and trailing surfaces. The rib-to-rib pitch is 10.0 times of the rib height (e) and the rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.055. The tests were conducted at various rotation numbers (0, 0.2, 0.4), while the Reynolds number and the rate of bleed flow to main flow were fixed at 10,000 and 10%, respectively. The results suggest that the heat/mass transfer characteristics in the internal cooling passage are influenced by rib turbulators, bleed flow and the Cariolis force induced by rotation. For the rotating ribbed passage with bleed flow, the heat/mass transfer on the leading surface is hardly affected by bleed flow, but that on the trailing surface decreases due to the diminution of main flow. The results also show that the friction factor decreases with the bleed flow.

  • PDF

Optimization of Angled Ribs for Heat Transfer Enhancement in Square Channel with Bleed Flow (유출홀이 설치된 정사각유로 내 열전달 향상을 위한 경사진 요철 최적설계)

  • Lee, Hyun;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2384-2389
    • /
    • 2007
  • The 2nd order response surface method (RSM) has been carried out to get optimum thermal design for enhanced heat transfer on square channel with bleed holes. The RSM was used as an optimization technique with Reynolds-averaged navier-stokes equation. Turbulence model for heat transfer analysis used RNG k-epsilon model. The wall function used enhanced wall function. Numerical local heat transfer coefficients were similar to the experimental tendency. Two design variables such as attack angle of rib (${\alpha}$), rib pitch-to-rib height ratio (p/e) were chosen. Operation condition considered bleeding ratio per bleed hole ($BR_{hole}$). A response surface were constructed by the design variables and operation condition. As a result, adjusted $R^2$ was more than 0.9. Optimization results of various objective function were similar to heat transfer in channel with and without bleed flow. But friction factor was lower than channel without bleed flow.

  • PDF

Change of Heat Transfer Characteristics in a Rotating Channel of Square Duct at Wall with Bleed Holes ( I ) - Effects of Rotation Speed - (회전하는 사각덕트 유로에서 벽면 유출홀에 따른 열전달 특성 변화( I ) -회전수 변화에 따른 영향 -)

  • Kim Sang In;Kim Kyung Min;Lee Dong-Hyun;Jeon Yun Heung;Cho Hyung Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.898-906
    • /
    • 2005
  • The present study has been conducted to investigate convective heat/mass transfer in the cooling passage with bleed holes. The rotating square channel has 40.0 mm hydraulic diameter and the bleed holes on the leading surface of the channel. The hole diameter of bleed hole is 4.5mm and its spacing is ( p/d:4.9) about five times of hole diameter. Exit mass flow rate through bleed holes is $10\%$ of the main mass flow rate and relation number is changed form 0.0 to 0.4. A naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy The cooling performance is influenced by exit mass flow rate through bleed holes and Coriolis force of rotating channel for fixed Reynolds number. The heat transfer on the leading surface is decreased due to Coriolis force. However the total heat transfer is enhanced around holes on the leading surface because of trapping flow by bleeding.

Change of Heat Transfer Characteristics in a Rotating Channel of . Square Duct at Wall with Bleed Holes ( II ) - Effects of Exit Mass Flow Rate - (회전하는 사각덕트 유로에서 벽면 유출홀에 따른 열전달 특성 변화( ll ) -유출유량 변화에 따른 영향 -)

  • Kim Sang In;Kim Kyung Min;Lee Dong-Hyun;Jeon Yun Heung;Cho Hyung Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.907-913
    • /
    • 2005
  • The present study has been conducted to investigate convective heat/mass transfer in the cooling passage with bleed holes. The rotating square channel has 40.0 mm hydraulic diameter and the bleed holes on the leading surface of the channel. The hole diameter of bleed hole is 4.5mm and its spacing is ( p/d:4.9) about five times of hole diameter. Exit mass flow rate through bleed holes is $0\%,\;10\%\;and\;20\%$ of the main mass flow rate respectively. rotation number is fixed 0.2. A naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The cooling performance is influenced by exit mass flow rate through bleed holes and Coriolis force of rotating channel for fixed Reynolds number. The heat transfer on the leading surface is decreased due to Coriolis force. However the total heat transfer is enhanced around holes on the leading surface because of trapping flow by bleeding.

Control of Shock-Wave/Bound-Layer Interactions by Bleed

  • Shih, T.I.P.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.24-32
    • /
    • 2008
  • Bleeding away a part of the boundary layer next to the wall is an effective method for controlling boundary-layer distortions from incident shock waves or curvature in geometry. When the boundary-layer flow is supersonic, the physics of bleeding with and without an incident shock wave is more complicated than just the removal of lower momentum fluid next to the wall. This paper reviews CFD studies of shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through a single hole, three holes in tandem, and four rows of staggered holes in which the simulation resolves not just the flow above the plate, but also the flow through each bleed hole and the plenum. The focus is on understanding the nature of the bleed process.

Effects of Bleed Flow and Angled Ribs on Heat Transfer Distributions in a Rotating Square Channel (유출유동 및 각도진 요철이 회전하는 사각덕트 내 열전달분포에 미치는 영향)

  • Park, Suk-Hwan;Jeon, Yun-Heung;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.76-82
    • /
    • 2007
  • The present study investigated the effects of channel rotation and bleed flow on heat/mass transfer in a square channel with $45^{\circ}$ rib turbulators. The bleed holes were located between the rib turbulators on the leading surface and those on the trailing surface case by case. The tests were conducted under the conditions of various bleed ratios (0.0, 0.2, 0.4) and rotation numbers (0.0, 0.2, 0.4) at Re=10,000. The results suggested that heat/mass transfer characteristics were influenced by the Coriolis force, decrement of main flow rate, secondary flow by angled ribs and bleed hole location. As the bleed ratio (BR) increased, the heat/mass transfer decreased on both surfaces due to the reduction of main flow rate. With increment of the rotation number, heat/mass transfer also decreased and almost the same because the reattachment of the secondary flow induced by angled ribs was weakened on the leading surface and the secondary flow was disturbed on the trailing surface by the Coriolis force.

Effects of Bleeding on Heat/Mass Transfer in a Rotating Channel with Transverse Ribs (90도 요철이 설치된 회전덕트에서 유출이 열/물질전달에 미치는 영향)

  • Park, Suk-Hwan;Jeon, Yun-Heung;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.1 s.34
    • /
    • pp.25-31
    • /
    • 2006
  • The present study investigates the effects of bleed flow on heat/mass transfer and pressure drop in a rotating channel with transverse rib turbulators. The hydraulic diameter $(D_h)$ of the square channel is 40.0mm. The bleed holes are located between the rib turbulators on leading surface and the hole diameter (d) is 4.5 mm. The square rib turbulators are installed on both leading and trailing surfaces. The rib-to-rib pitch is 10.0 times of the rib height(e) and the rib height-to-hydraulic diameter ratio $(e/D_h)$ is 0.055. The tests were conducted at various rotation numbers (0, 0.2, 0.4), while the Reynolds number and the rate of bleed flow to main flow (BR) were fixed at 10,000 and $10\%$, respectively. The results suggest that the heat/mass transfer characteristics in the internal cooling passage are influenced by rib turbulators, bleed flow and the Coriolis force induced by rotation. For the rotating ribbed passage with bleed flow, the heat/mass transfer on the leading surface is hardly affected by bleed flow, but that on the trailing surface decreases due to the diminution of main flow. The results also show that the friction factor decreases with the bleed flow.

Optimization of Angled Ribs for Heat Transfer Enhancement in a Square Channel with Bleed Flow (유출유동을 가진 정사각유로 내 열전달 향상을 위한 경사진 요철 최적설계)

  • Lee, Hyun;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.300-306
    • /
    • 2008
  • In the present study, the second order response surface method (RSM) is carried out to get optimum thermal design for enhancing heat transfer in a square channel with bleed flow. The RSM is used as an optimization technique. To calculate the heat transfer, RNG k-epsilon model and enhanced wall function are used. To design optimum rib turbulators, two design variables such as attack angle of rib $({\alpha})$ and rib pitch-to-rib height ratio (p/e) are optimized. In these analyses, the channel inlet Reynolds number was fixed at 10,000 in both non-bleeding and bleeding cases. The response surfaces of two design variables are constructed in cases with and without bleed flow. As a result, the optimum (or highest) heat transfer values are almost the same in ranges of two cases with and without bleed flow. However, the friction losses in the case with bleed flow are lower than those without bleed flow.