• Title/Summary/Keyword: Bloating

Search Result 93, Processing Time 0.024 seconds

Bloating Mechanism of Lightweight Aggregate with the Size

  • Lee, Ki Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.241-245
    • /
    • 2016
  • The purpose of this study was to investigate the bloating mechanism of artificial lightweight aggregates with different sizes (ESA, effective surface area). Aggregates were produced using hard clay, stone sludge, and a bloating agent in order to observe the effect of the gradation of the artificial lightweight aggregates. Kerosene and amorphous carbon were used as bloating agent. The particle size of the produced aggregate ranged from 3 mm to 9 mm. With regard to the amount of bloating agent to be used, 2 ~ 6 parts by weight were used. The specific gravity, absorption rate, and the type of aggregates produced by rapid sintering at $1075{\sim}1200^{\circ}C$ were determined. Microstructures were observed. When ESA had a value of 1 or below, kerosene, which has a high burning rate, was found to be advantageous for use as a bloating agent. When ESA had a value of 1 or above, carbon, which has a relatively low burning rate was found to be an advantageous bloating agent. It is thought that kerosene is more advantageous, as ESA decreases, for the production of aggregates having low water absorption rate.

Effects of Korean Hand Acupressure on Pain and Abdominal Bloating of Patients Receiving Laparoscopic Hysterectomy (수지요법이 복강경하 자궁절제술 환자의 통증과 복부팽만감에 미치는 효과)

  • Yun, Kyoung Hee;Kim, Sook Young
    • The Korean Journal of Rehabilitation Nursing
    • /
    • v.18 no.1
    • /
    • pp.20-28
    • /
    • 2015
  • Purpose: This study aimed to investigate the effects of Korean hand acupressure on pain and abdominal bloating of patients receiving laparoscopic surgery. Methods: This study was a quasi-experimental design using a nonequivalent control group pre-post test. The experimental group and the control group were 39 patients each who were hospitalized at gynecology ward of a hospital located in Gyeonggi-do. The experimental group received Korean hand acupressure therapy on the meridian point: A5, A6, H3, H7, I38 for 48 hours immediately after the surgery. Pain and abdominal bloating were measured at 5 times. Data were analyzed using SPSS/Win 18.0. Results: The experimental group showed lower pain score than the control group (p<.001). While there was no significant difference in abdominal bloating (p=.528), the time effect was significantly different (p<.001). Conclusion: The findings indicate that Korean hand acupressure reduces pain and abdominal bloating of laparoscopic surgery patients.

Lightweight Aggregate Bloating Mechanism of Clay/Incinerated Ash/Additive System (점토/소각재/첨가제계 인공 경량골재의 발포기구)

  • Kwon, Yong-Joon;Kim, Yoo-Taek;Lee, Ki-Gang;Kim, Young-Jin;Kang, Seung-Gu;Kim, Jung-Hwan;Park, Myoung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.811-816
    • /
    • 2001
  • The influence of the incinerated ash and additives on glass phase formation of lightweight aggregate, weight-lightening, and the bloating mechanism was investigated. Clay was used as base materials and incinerated ash was added from 0 to 30wt%. The additives such as $Na_2CO_3,\;CaCo_3,\;K_2CO_3,\;MgCO_3$, and a little amount of waste oil were added to the mixed body. In clay/incinerated ash/additive system, it turned out that $CaCO_3\;and\;MgCO_3$ were the components for glass phase formation and $Na_2CO_3$ was the component for both glass phase formation and weight-lightening. The small addition of waste oil from 0.5wt% to 3.0wt% affect on the bloating of aggregate. Incinerated ash had a good effect on the glass phase controlling. The most effective condition controlling glass phase and bloating of aggregate was 10wt% incinerated ash, 2wt% waste oil at 1200$^{\circ}$C. The bloating mechanism of lightweight aggregate is as follows; 1) micro-crack formation caused by thermal-shock and gas generation from inside of aggregate, 2) volume expansion by glass phase formation on the aggregate surface and rapid gas bloating inside of aggregate, 3) densification after bloating.

  • PDF

Dependence of physical properties of artificial lightweight aggregates upon a flux and a bloating agent addition (인공경량골재 특성의 발포제 및 융제 첨가 의존성)

  • Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • The effect of bloating and fluxing agent on the microstructure and physical properties were studied in manufacturing the artificial lightweight aggregates of bulk density below] using clay and stone sludge. In case of the aggregates added only with bloating agent, the bulk density and water absorption were $0.5{\sim}1.0$ and $41{\sim}110%$ respectively but the microstucture was not uniform with a rough appearance. For the aggregates added with a fluxing agent and one bloating agent, a part of shell was lost due to explosion of specimen caused by over-bloating during a sintering. The mixed addition of bloating agents with vacuum oil, carbon and ${Fe_2}{O_3}$ made the microstructure homogeneous by generating an uniform black core and shell structure. The aggregates added with mixed agents and sintered at $1200^{\circ}C$ showed the bulk density 67 % lower and water absorption 48 times higher than those of the specimen with no additives. ]n this study, the artificial lightweight aggregates showing the bulk density of $0.5{\sim}1.0$ and water absorption of $50{\sim}125%$ could be fabricated to apply to various fields.

Fabrication of Artificial Light-weight Aggregates of Uniform Bloating Properties Using a Temperature-raising Sintering Method (승온 소성법을 이용한 균일 발포 특성을 갖는 인공경량골재의 제조)

  • Kang, Min-A;Kang, Seung-Gu;Lee, Gi-Gang;Kim, Yoo-Tack
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.161-166
    • /
    • 2012
  • The temperature-rasing sintering method was used in this study to fabricate the aggregates of uniform pore size and distribution containing reject ash occurred in the thermal power plant. The spheric green aggregates made of reject ash were put into the box furnace of 800~$1000^{\circ}C$, heated with a heating rate of 5~$15^{\circ}C$/min to 1200~$1275^{\circ}C$, sintered for 10 min and then discharged out of the furnace to the room temperature. The input temperature, heating rate and sintering temperature increased the bloating phenomenon of the specimen, and the sintering temperature among them was the most effective factor. The aggregate manufactured at $1275^{\circ}C$ had the specific gravity of about 1.0 and water absorption of 1~2%, and the pores of 500~1,000 ${\mu}m$ were uniformly distributed across the whole specimen. Especially, the aggregates fabricated using the temperature-rasing sintering method in this study showed an excellent bloating properties and uniform microstructure without black core phenomenon which is typical for the bloated ceramics synthesized by direct sintering method.

A Study on Bloating of Porous Foam by Pressure Infiltration with H2O2 (과산화수소의 가압침투에 의한 다공성 발포체에 관한 연구)

  • Kim, Gui-Shik;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.86-91
    • /
    • 2016
  • This paper is concerned chiefly with the method of porous foam manufacture using basalt stone powder sludge. The hydrogen peroxide($H_2O_2$) of bloating agent has lots of problems to manufacture porous lightweight aggregate due to fast reaction rate with cement or calcium hydroxide($Ca(OH)_2$). The $H_2O_2$ injecting method using nozzle for manufacturing porous lightweight aggregate is proposed, in this study. This method is to inject $H_2O_2$ at the pressure of 10 MPa on upper side of slurry mixing materials such as stone powder sludge and quick-lime(CaO) by injector. The specimen was dried in furnace at $100^{\circ}C$ for 1 hour and cured at ambient temperature for 30 days. We analyzed the characteristics including specific gravity and water absorption. The experiments were found that the porous foam has low specific gravity, high water absorption and uniform distribution of porous more than manufactured foam by general bloating methods.

Preparation for Porous Ceramics Using Low Grade Clay (저급점토를 이용한 다공성 세라믹스 제조)

  • 한상목;신대용;강상규
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.575-582
    • /
    • 1998
  • Sutiability of Jungsan clay shale dolomite sludge Anyang feldspar and alumina as raw materials for light-weight porous ceramics was examined. In order to find optimum manufacturing conditions compositions heating temperatuers and heating times were varied and their effects on physical properties were measured and bloating mechanism was investigated. Jungsan clay seems suitable as raw material to make the light-weight constructional materials with 5wt% of ANyang feldspar and alumina added in calcined clay (800$^{\circ}C$) having bulk density of 0.45g/cm3 water absorption of 1.34% and compressive strength of 85kg/cm2 rapid-heated at 1200$^{\circ}C$ for 30min. It is suggested that bloating mechanism depends on the difference of tem-peratures between the inside and outside in specimen the remained gases in interstices can bloat by the li-quid phase of surface with high viscosity and gas pressure at elevated temperature.

  • PDF

Effect of EAF dust on the formation of ultra lightweight aggregates by using bottom ash and dredged soil from coal power plant (인공경량골재의 EAF dust 첨가에 따른 초경량화에 관한 연구)

  • Choi, Yun-Jae;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.129-135
    • /
    • 2011
  • EAF dust from steel industry used as primary materials for the production of lightweight aggregates. Fe compounds in EAF dust plays an important role in the bloating reaction. This study was conducted to evaluate the feasibility of using bottom ash and dredged soil from coal power plant and EAF dust. The effect of different raw material compositions and sintering temperatures on the lightweight aggregate properties were evaluated. The characteristic of thermal bloating of bottom ash and dredged soil were mainly influenced by ferrous materials. The specific gravity of aggregate was decreased with the addition of EAF dust and kerosene was reduced sintering temperature on the bloating formation. Lightweight aggregate containing 10% EAF dust having apparent density under 1.0 g/$cm^3$ were produced at $1150{\sim}1200^{\circ}C$.

Effect of activated carbon on bloating properties of artificial lightweight aggregates containing coal reject ash and bottom ash (석탄 잔사회 및 바닥재가 포함된 인공경량골재의 발포특성에 미치는 활성탄소의 영향)

  • Kang, Min A;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.201-206
    • /
    • 2013
  • The coal bottom ash and reject ash discharged from a coal-fired power plant are difficult to recycle so most of them are mainly landfill-disposed. In this study, the artificial aggregate were produced using reject ash, bottom ash and dredged soil emitted from the coal-fired power plant in Korea and the effect of experimental factors on the bloating behavior and the properties of the aggregates were analyzed. In particular, a lot of unburned carbon in the reject ash was removed by calcination and the activated carbon was added to batch powders then the dependence of those process upon bloating properties of artificial aggregate were investigated. For this purpose, the specific gravity and water absorption values of artificial aggregates were investigated in conjunction with microstructural observations. This study could contribute to increase the recycling rate of the reject ash.

A Study on Bloating of Porous Ceramic (다공성 세라믹의 발포에 관한 연구)

  • Kim, Gui-Shik;Kim, Hyeon-Gwan;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • In this study, lightweight aggregate was made from basalt stone powder sludge. Clay and glass powder were respectively added from 0 to 20 wt% and from 0 to 100 wt%. The glass powder helped to form glassy phase which trapped generating gas in the materials. $CaCO_3$ helping bloating process was added from 0 to 10 wt%. It was possible to produce lightweight aggregate at range from $1150^{\circ}C$ to $1200^{\circ}C$. The specimen was heated in furnace at 1100, 1150 and $1200^{\circ}C$ for 15 min, respectively, to sinter aggregates. Chemical composition of materials were determined, and characteristics were analyzed, including specific gravity, water absorption. Lightweight aggregate which was heated at $1200^{\circ}C$ had specific gravity of $0.53g/cm^3$, water absorption of 3.08%, and this value satisfied KS L 8551 standard.