• Title/Summary/Keyword: Bloating agent

Search Result 4, Processing Time 0.023 seconds

Bloating Mechanism of Lightweight Aggregate with the Size

  • Lee, Ki Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.241-245
    • /
    • 2016
  • The purpose of this study was to investigate the bloating mechanism of artificial lightweight aggregates with different sizes (ESA, effective surface area). Aggregates were produced using hard clay, stone sludge, and a bloating agent in order to observe the effect of the gradation of the artificial lightweight aggregates. Kerosene and amorphous carbon were used as bloating agent. The particle size of the produced aggregate ranged from 3 mm to 9 mm. With regard to the amount of bloating agent to be used, 2 ~ 6 parts by weight were used. The specific gravity, absorption rate, and the type of aggregates produced by rapid sintering at $1075{\sim}1200^{\circ}C$ were determined. Microstructures were observed. When ESA had a value of 1 or below, kerosene, which has a high burning rate, was found to be advantageous for use as a bloating agent. When ESA had a value of 1 or above, carbon, which has a relatively low burning rate was found to be an advantageous bloating agent. It is thought that kerosene is more advantageous, as ESA decreases, for the production of aggregates having low water absorption rate.

Dependence of physical properties of artificial lightweight aggregates upon a flux and a bloating agent addition (인공경량골재 특성의 발포제 및 융제 첨가 의존성)

  • Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • The effect of bloating and fluxing agent on the microstructure and physical properties were studied in manufacturing the artificial lightweight aggregates of bulk density below] using clay and stone sludge. In case of the aggregates added only with bloating agent, the bulk density and water absorption were $0.5{\sim}1.0$ and $41{\sim}110%$ respectively but the microstucture was not uniform with a rough appearance. For the aggregates added with a fluxing agent and one bloating agent, a part of shell was lost due to explosion of specimen caused by over-bloating during a sintering. The mixed addition of bloating agents with vacuum oil, carbon and ${Fe_2}{O_3}$ made the microstructure homogeneous by generating an uniform black core and shell structure. The aggregates added with mixed agents and sintered at $1200^{\circ}C$ showed the bulk density 67 % lower and water absorption 48 times higher than those of the specimen with no additives. ]n this study, the artificial lightweight aggregates showing the bulk density of $0.5{\sim}1.0$ and water absorption of $50{\sim}125%$ could be fabricated to apply to various fields.

A Study on Bloating of Porous Foam by Pressure Infiltration with H2O2 (과산화수소의 가압침투에 의한 다공성 발포체에 관한 연구)

  • Kim, Gui-Shik;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.86-91
    • /
    • 2016
  • This paper is concerned chiefly with the method of porous foam manufacture using basalt stone powder sludge. The hydrogen peroxide($H_2O_2$) of bloating agent has lots of problems to manufacture porous lightweight aggregate due to fast reaction rate with cement or calcium hydroxide($Ca(OH)_2$). The $H_2O_2$ injecting method using nozzle for manufacturing porous lightweight aggregate is proposed, in this study. This method is to inject $H_2O_2$ at the pressure of 10 MPa on upper side of slurry mixing materials such as stone powder sludge and quick-lime(CaO) by injector. The specimen was dried in furnace at $100^{\circ}C$ for 1 hour and cured at ambient temperature for 30 days. We analyzed the characteristics including specific gravity and water absorption. The experiments were found that the porous foam has low specific gravity, high water absorption and uniform distribution of porous more than manufactured foam by general bloating methods.

Morphological optimization of process parameters of randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Manwatkar, Sushant Krunal;Sharma, Sharad Chandra;Verma, Anil
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • A microstructure analysis is carried out to optimize the process parameters of a randomly oriented discrete length hybrid carbon fiber reinforced carbon matrix composite. The composite is fabricated by moulding of a slurry into a preform, followed by hot-pressing and carbonization. Heating rates of 0.1, 0.2, 0.3, 0.5, 1, and $3.3^{\circ}C/min$ and pressures of 5, 10, 15, and 20 MPa are applied during hot-pressing. Matrix precursor to reinforcement weight ratios of 70:30, 50:50, and 30:70 are also considered. A microstructure analysis of the carbon/carbon compacts is performed for each variant. Higher heating rates give bloated compacts whereas low heating rates give bloating-free, fine microstructure compacts. The compacts fabricated at higher pressure have displayed side oozing of molten pitch and discrete length carbon fibers. The microstructure of the compacts fabricated at low pressure shows a lack of densification. The compacts with low matrix precursor to reinforcement weight ratios have insufficient bonding agent to bind the reinforcement whereas the higher matrix precursor to reinforcement weight ratio results in a plaster-like structure. Based on the microstructure analysis, a heating rate of $0.2^{\circ}C/min$, pressure of 15 MPa, and a matrix precursor to reinforcement ratio of 50:50 are found to be optimum w.r.t attaining bloating-free densification and processing time.