• 제목/요약/키워드: Blood Acid-base

검색결과 76건 처리시간 0.021초

급성산-염기 균형장해때의 국소 혈류량 변화 (Local blood flow in acute respiratory and metabolic acid-base distrubances in dog)

  • 김삼현;이영균;김우겸
    • Journal of Chest Surgery
    • /
    • 제17권1호
    • /
    • pp.101-109
    • /
    • 1984
  • The influences of acute respiratory and metabolic acid-base disturbances on the carotid, renal and coronary blood flow were measured in dogs. Respiratory acidosis was induced by artificial respiration with 8% CO2 -02 gas mixture and respiratory alkalosis was induced by hyperventilation under the control of respirator. Metabolic acidosis and metabolic alkalosis were induced by intravenous infusion of 0.3N hydrochloric acid and 0.6M sodium bicarbonate solution. To observe the effect of hyperkalemia, isotonic potassium chloride solution was infused. CVI electromagnetic flowmeter probes were placed on the left common carotid artery, left renal artery and left circumflex coronary artery. Each flow was recorded on polygraph. 1. The carotid blood flow showed rapid showed rapid and marked increase in acute respiratory acidosis. Even in the cases when arterial blood pressure was lowered during the state of respiratory acidosis, carotid blood flow increased. By the infusion of hydrochloric acid, carotid blood flow increased slowly and returned to the previous label after discontinuation of the infusion. Carotid blood flow also increased by the infusion of large amount of sodium bicarbonate, but it might be the combined effect of expansion of extracellular fluid and compensatory elevation of carbon dioxide tension. 2.The renal blood flow remained unchanged during the acute acid-base disturbances, suggesting effective autoregulation. Renal blood flow, however, increased very slowly when the infusion of potassium chloride continued for a long period. 3.Although less marked than the carotid blood flow, the coronary blood flow increased in the acute respiratory and metabolic acidosis. In asphyxiated condition, coronary blood flow increased most markedly and this might be the combined effect of hypoxia, hypercapnea, and lowering of pH. In summary, the carotid blowflow showed more marked change in the acute respiratory and metabolic acidosis than the renal and coronary blood flow. Respiratory and metabolic components of acid-base disturbances may influence the local blood flow concomitantly, there being more differences in the individual responses, but respiratory component manifested more rapid and marked effect than metabolic component.

  • PDF

염소의 산·염기 균형 특성에 관한 연구 (A Study on Characteristics of Acid-Base Balance in Goats)

  • 양일석;성호경
    • 대한수의학회지
    • /
    • 제25권2호
    • /
    • pp.133-144
    • /
    • 1985
  • The changes of acid-base status in vitro of the venous blood for 24 hours in ten Korean native goat were investigated. The acid-base parameters were measured within ten minutes after collection of the blood, and every hour during the first six hours and finally after twenty four hours of storage. Blood samples were stored at two different temperatures ($0-4^{\circ}C$ and $21-24^{\circ}C$). Twelve goats were induced acute acid-base disturbances by intravenous infusion of either hydrochloric acid or sodium bicarbonate and inhalated with $CO_2$ gas mixture (20% $CO_2$, 80% $O_2$) or hyperventilation were performed by means of respirator. The results were as follows; 1. Blood samples could be stored during the first two hours in ice water ($0-4^{\circ}C$) and one hour at room temperature without significant changes in pH. The magnitudes of changes were similar to those of cow, and lower than those of men and dogs. 2. The mean values of acid-base parameters in normal goat were arterial pH, 7.40; $P_{CO_2}$, 35.4mmHg; $HCO_3{^-}$, 21.8mEq/L. 3. Both the base excess and the bicarbonate showed high correlation (r=0.99) during the metabolic disturbance and were represented as $B.E.=1.38\;HCO^-{_3}-29.7$. 4. The slope of blood buffer curve obtained from the in vivo experiment was 16.3mEq/L/pH. 5. The magnitudes of changes in hydrogen ion concentration per unit change of $P_{CO_2}$ were 0.8nM/mmHg in hypercapnia and 1.0nM/mmHg in hypocapnia. 6. The ranges of acid-base parameters in normal goat urine were pH, 6.0-8.1; $P_{CO_2}$, 42-61mmHg; $HCO_3{^-}$, 2-110mEq/L. The concentration of potassium was higher (60-200mEq/L), and that of sodium was lower (8-70mEq/L) than those of human urine.

  • PDF

Effects of Long-term Heat Exposure on Adaptive Mechanism of Blood Acid-base in Buffalo Calves

  • Korde, J.P.;Singh, G.;Varshney, V.P.;Shukla, D.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.742-747
    • /
    • 2007
  • In order to investigate the mechanism of adaptation to long-term heat stress, six female buffalo calves of about 7 to 8 months age, were exposed to the cool-comfort environment (THI 65) for 21 days to obtain normal values of blood acid-base. An adaptive response of acid-base regulation was determined to long term (21 days) exposure of buffalo calves to hot-dry (THI 80) and hot-humid (THI 84) conditions. Higher rectal temperature and respiratory rate was recorded under hot-humid exposure compared to hot-dry. Significant reduction in the rectal temperature and respiratory rate on day 21 of hot-dry exposure indicated early thermal adaptation compared to hot-humid. Decreasing rectal temperature and respiratory rate from day 1 to 21 was associated with concurrent decrease in blood pH and pCO2. Increased plasma chloride concentration with low base excess in blood and in extracellular fluid suggested compensatory response to respiratory alkalosis. Reduced fractional excretion of sodium with increased fractional excretion of potassium and urine flow rate indicated renal adaptive response to heat stress.

동맥혈 및 뇨 $P_CO_2}, P{O_2}$ 의 산-염기 균형 및 뇨량과의 관계 (Relationships between arterial and urinary $P_CO_2}, P{O_2}$ and acid-base balances)

  • 김용진;이영균
    • Journal of Chest Surgery
    • /
    • 제16권2호
    • /
    • pp.213-220
    • /
    • 1983
  • Pulmonary function is the determinant of blood gas tension. However, Acid-Base disturbances can also alter partial pressures of oxygen and carbon dioxide in arterial blood. During respiratory acidosis $PO_2$ will be lowered and reverse changes will be produced during respiratory alkalosis. On the other hand, in metabolic acidosis $PO_2$ will be elevated and $PCO_2$ will be lowered by the respiratory compensation, and reverse response will be induced in metabolic alkalosis. Urinary gas tension has many influencing factors than arterial blood and difficult to estimate the tendency of its alterations. Urinary $PO_2$ and $PCO_2$ are not always identical level as venous blood. It is to be altered by blood gas tension, flow rate of urine, metabolic rate of kidney, and Acid-Base status of blood. Particularly countercurrent exchange of oxygen and carbon dioxide in the renal medulla will make larger alteration of gas tension than venous blood. After induction of Acid-Base disturbances [disturbances] arterial and urinary $PCO_2$, $PO_2$, urinary volume, and osmolarity were determined in dogs, and the relationships between arterial and urinary $PCO_2$ , $PO_2$ Acid-Base disturbances, urinary volume, and osmolarity were investigated. 1. During the acute Metabolic and Respiratory disturbances urinary pH did not respond on respiratory origin. However, there were immediate urinary response in pH on metabolic origin. 2. Urinary $PO_2$, $PCO_2$, did not always follow arterial or venous gas tension and Acid-Base disturbance. Urinary $PCO_2$, correlate well with the urinary volume. The larger the urinary volume, $PCO_2$ lowered to the venous level. The smaller the urinary volume, urinary $PCO_2$ tends to be higher. However urinary $PO_2$ did not have any particular correlation with urinary volume. 3. Correlation between urinary $PCO_2$ and $PO_2$ were inversely proportional to arterial blood. Differences of $PCO_2$ between arterial blood and urine also did not have any particular correlation with urinary volume. This may suggest that changes on blood gas tensions can influence on urinary $PCO_2$. 4. There were eminent clear inverse correlation between urinary $PCO_2$ and osmolar concentrations of urine. Above results strongly suggest that partial pressure of gas in urine primarily depend upon counter-current exchanges in renal medullary tissues.

  • PDF

복강경 수술에서 기복제 이산화탄소의 37℃ 가온이 수술 중 체온, 수축기압 및 심박동수와 산염기 균형에 미치는 영향 (Effects of 37℃ Carbon Dioxide Pneumoperitoneum on Core Body Temperature, Systolic Blood Pressure, Heart Rate and Acid-Base Balance: A Randomized Double-blind Controlled Trial)

  • 박진일;윤혜상
    • Journal of Korean Biological Nursing Science
    • /
    • 제19권2호
    • /
    • pp.76-85
    • /
    • 2017
  • Purpose: The purpose of this study was to compare the effects of $21^{\circ}C\;CO_2$ and $37^{\circ}C\;CO_2$ pneumoperitoneum on body temperature, blood pressure, heart rate, and acid-base balance. Methods: Data were collected at a 1300-bed university hospital in Incheon, from February through September 2012. A total of 74 patients who underwent laparoscopic colectomy under general anesthesia with desflurane were randomly allocated to either a control group or an experimental group. The control group received $21^{\circ}C\;CO_2$ pneumoperitoneum; the experimental group received $37^{\circ}C\;CO_2$ pneumoperitoneum. The pneumoperitoneum of the two groups was under abdominal pressure 15 mmHg. Body temperature, systolic blood pressure, heart rate and acid-base balance were assessed at 30 minutes and 90 minutes after pneumoperitoneum, and again at 30 minutes after arriving at the Post Anesthesia Care Unit. Results: Body temperature in the $37^{\circ}C\;CO_2$ pneumoperitoneum group was significantly higher (F= 9.43, p< .001) compared to the $21^{\circ}C\;CO_2$ group. However, there were no statistically significant differences in systolic blood pressure (p= .895), heart rate (p= .340), pH (p= .231), PaCO2 (p= .490) and HCO3- (p= .768) between the two groups. Conclusion: Pneumoperitoneum of $37^{\circ}C\;CO_2$ is effective for the increase of body temperature compared to pneumoperitonium of $21^{\circ}C\;CO_2$, and it does not result in a decrease of blood pressure, heart rate or acid-base imbalance.

개 파보바이러스성 장염에서 산-염기 장애의 진단 (Diagnosis of Acid-Base Disorders in Canine Parvoviral Enteritis)

  • 정석영;김요한;김두
    • 한국임상수의학회지
    • /
    • 제28권4호
    • /
    • pp.352-356
    • /
    • 2011
  • Abstract: This study was aimed to diagnose acid-base disorders of dogs with canine parvoviral enteritis (CPE) and data to establish a rational fluid therapy regimen for patients with CPE. A total of 43 dogs which had clinical signs of CPE and had detected canine parvovirus by polymerase chain reaction, were bled anaerobically from jugular vein at the time of admission. Blood chemical test, determination of electrolytes and blood gas analysis were conducted, and calculated values were obtained from each measured items. The values of blood chemical and electrolytes of dogs with CPE were various depending on the degree of clinical signs, and these tests were not specific to diagnose for CPE. Hypochloremia (20.9%), hyperchloremia (11.6%), hypokalemia (7.0%), hyperkalemia (11.6%), hyponatremia (9.3%) and hypernatremia (18.6%) were diagnosed as abnormalities of electrolytes from 43 dogs with CPE. The 29 out of 43 dogs (67.4%) were metabolic acidosis and 3 dogs (7.0%) were metabolic alkalosis. The acid-base status of 11 dogs out of 43 dogs (25.6%) was normal.

A Novel Therapeutic Measure for Metabolic Acidosis with Amino Acids

  • Kim, Jun;Goo, Yong-Sook;Kim, Sang-Jeong;Park, Sang-Chul;Koh, Chang-Soon
    • The Korean Journal of Physiology
    • /
    • 제26권1호
    • /
    • pp.89-97
    • /
    • 1992
  • In hypoxic tissue conditions, pyruvate can not enter the Krebs cycle and lactic acid, produced from pyruvate, accumulates to induce lactic acidosis. Pyruvate, However, can also be converted to alanine by glutamate pyruvate transaminase, that could be enhanced by glutamate. Therefore, it would be a fundamental measure to treat the lactic acidosis in tissue hypoxic conditions when one can convert the accumulated lactic acid, through pyruvate, to alanine. To test the above hypothesis, we induced a lactic acidosis in cats and the effect of glutamate on recovery of acid base state and removal of the lactic acid from blood were assessed and the results were compared with those of bicarbonate administration, which is one of the most frequently used conventional measure for correction of the acid base state during lactic acidosis. The results were that glutamate and combined glutamate bicarbonate solutions not only restored the acid base status completely from the lactic acidosis in an hour or two, but also restored the blood level of lactate partially. We concluded that administration of glutamate solution to convert pyruvate into alanine is effective in preventing lactic acid accumulation and treating lactic acidosis.

  • PDF

Effects of endurance exercise under hypoxia on acid-base and ion balance in healthy males

  • Nam, Sang-Seok;Park, Hun-Young
    • 운동영양학회지
    • /
    • 제24권3호
    • /
    • pp.7-12
    • /
    • 2020
  • [Purpose] This study was performed to investigate the acid-base and ion balance at rest and after exercise in healthy males under normoxia, moderate hypoxia, and severe hypoxia. [Methods] Ten healthy Korean males completed three different trials on different days, comprising exercise under normoxia (FiO2 = 20.9%, N trial), moderate hypoxia (FiO2 = 16.5%, MH trial), and severe hypoxia (FiO2 = 12.8%, SH trial). They undertook endurance exercise for 30 min on a cycle ergometer at the same relative exercise intensity equivalent to 80% maximal heart rate under all conditions. Capillary blood samples were obtained to determine acid-base and ion balance at rest and after exercise. [Results] Exercise-induced blood lactate elevations were significantly increased as hypoxic conditions became more severe; SH > MH > N trials (P = 0.003). After exercise, blood glucose levels were significantly higher in the SH trial than in the N and MH trials (P = 0.001). Capillary oxygen saturation (SCO2) levels were significantly lowered as hypoxic conditions became more severe; SH > MH > N trials (P < 0.001). The pH levels were significantly lower in the MH trial than that in the N trial (P = 0.010). Moreover, HCO3- levels were significantly lower in the SH trial than in the N trial, with significant interaction (P = 0.003). There were no significant differences in blood Na+, K+, and Ca2+ levels between the trials. [Conclusion] MH and SH trials induced greater differences in glucose, lactate, SCO2, pH, and HCO3- levels in capillary blood compared to the N trial. Additionally, lactate, SCO2, and HCO3- levels showed greater changes in the SH trial than in the MH trial. However, there were no significant differences in Na+, K+, and Ca2+ levels in MH and SH trials compared to the N trial.

Antioxidants Supplementation on Acid Base Balance during Heat Stress in Goats

  • Sivakumar, A.V.N.;Singh, G.;Varshney, V.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권11호
    • /
    • pp.1462-1468
    • /
    • 2010
  • The effects of vitamin C and vitamin E with selenium on acid-base balance and some stress hormones were evaluated during heat stress in goats. Goats, 1.5 years of age, were divided into control, heat stress and antioxidant treatment groups 1, 2 and 3. Except for the control, all groups were exposed to a temperature of $40{\pm}2^{\circ}C$ with a relative humidity of 30% for 5 h/d for 21 days in a psychrometric chamber. Rectal temperature and respiratory rates were recorded daily post exposure. Blood samples were collected on every 3rd day for estimation of plasma vitamins C and E, total antioxidant activity and hormones, and separate blood samples were taken to estimate acid-base status. The rectal temperature and respiratory rates were increased (p<0.05) in the heat stress group only. Except for pH and $pO_2$, which were increased significantly (p<0.05) other parameters of acid-base balance such as $pCO_2$, $HCO_3^-$, $TCO_2$, BEb, BEcef, PCV and Hb were significantly decreased (p<0.05) in the heat stress group. An improvement in acid-base status was noted in the antioxidant supplemented groups. Prolactin and cortisol levels were significantly (p<0.05) higher and free T3 and T4 levels were significantly (p<0.05) lower in the heat stress group. Levels of prolactin and cortisol were decreased and free T3 and T4 were increased in antioxidant treatment groups. Different levels of antioxidant supplementation resulted in similar protection against heat stress.

Electrolyte and acid-base imbalance in native calves with enteropathogenic diarrhea

  • Kang, Seongwoo;Park, Jinho;Choi, Kyoung-Seong;Park, Kwang-Man;Kang, Jin-Hee;Jung, Dong-In;Yu, Dohyeon
    • 대한수의학회지
    • /
    • 제60권3호
    • /
    • pp.133-137
    • /
    • 2020
  • Diarrhea is the most common cause of death in calves, and remains a major health challenge. Although there are many studies on the related pathogens, the understanding of the clinicopathological changes is limited. This study aimed to identify the pathogens and observe the clinicopathological changes in electrolytes and acute phase proteins (APPs) associated with diarrhea. Blood samples and fecal samples were collected from 141 calves for the determination of APPs, electrolyte and acid-base status and identification of enteropathogens, respectively. Single or co-infections with enteropathogens, including virus (bovine viral diarrhea virus, coronavirus, and rotavirus), Eimeria, Cryptosporidium, and Escherichia coli K99 were detected in both non-diarrheic and diarrheic calves. Levels of APPs such as serum amyloid A, haptoglobin and fibrinogen were comparable between diarrheic and non-diarrheic calves. Hypoglycemia, high blood urea, electrolytes and acid-base imbalance (hyponatremia, hypochloremia, and decreased bicarbonate), and strong ion difference (SID) acidosis showed a significant association in diarrheic calves (p < 0.01). Particularly, significant hyponatremia, bicarbonate loss, SID acidosis, hypoglycemia, and elevated blood urea nitrogen were found in rotavirus-infected calves. Monitoring the clinicopathological parameters of APPs and electrolyte levels could be vital in the clinical management of diarrheic calves.