• 제목/요약/키워드: Blood Flow Rate

검색결과 480건 처리시간 0.026초

헤마토크릿에 따른 혈액의 유변학적 특성 변화 (Effect of hematocrit on hemorheological characteristics of blood flow in a microtube)

  • 지호성;이정엽;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.111-112
    • /
    • 2006
  • In order to investigate flow characteristics of blood flow in a micro tube ($100{\mu}m$ in diameter) according to hematocrit, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, a 2 head Nd:YAG laser, a 12 bit cooled CCD camera and a delay generator. Blood was supplied into the micro tube using a syringe pump. Hematocrit of blood was controlled to be 20%, 30% and 40%. The blood flow has a cell free layer near the tube wall and its thickness was changed with increasing the flow rate and hematocrit. The hemorheological characteristics such as shear rate and viscosity were evaluated using the velocity field data measured. As the flow rate increased, the blunt velocity profile in the tube center was sharpened. The viscosity of blood was rapidly increased with decreasing shear rate, especially in the region of low shear rate, changing RBC rheological properties. The variation of velocity profile and blood viscosity shows typical characteristics of Non-Newtonian fluids. On the basis of inflection points, the cell free layer and two-phase flow consisting of plasma and suspensions including RBCs were clearly discriminated.

  • PDF

미세튜브 내부를 흐르는 혈액유동의 유변학적 특성에 대한 in-vitro 연구 (In-vitro Study on Hemorheological Behaviors of Blood Flow Through a Micro Tube)

  • 강명진;지호성
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권2호
    • /
    • pp.99-105
    • /
    • 2010
  • In order to obtain velocity profile of blood flow with high spatial resolution, a micro PIV technique consisted of a fluorescent microscope, double-pulsed YAG laser, cooled CCD camera was applied to in-vitro blood flow experiment through a micro round tube of a diameter $100{\mu}m$. Velocity distributions of blood flow for rabbit were obtained. The viscosity profiles for shear rate were found at flowing condition. To provide hemorheological characteristics of blood flow, the viscosities for shear rate were evaluated. The viscosity of blood also steeply increase by decreasing shear rate resulting in Non-Newtonian flow, especially in low shear rate region caused by RBC rheological properties. The results show typical characteristics of Non-Newtonian characteristics from the results of velocity profile and viscosity for blood flow. From the inflection points, cell free layer and two-phase flow consisted with plasma and suspensions including RBCs can be separated.

전방순환동맥류 발생 위치에 대한 혈류량 및 분지각의 영향 및 동맥류 발생 전후의 유동 변화에 관한 수치해석 연구 (NUMERICAL ANALYSIS FOR THE EFFECT OF BLOOD FLOW RATE AND BIFURCATION ANGLE ON THE LOCATION OF ANTERIOR CIRCULATION ANEURYSM AND THE CHANGE OF BLOOD FLOW CHARACTERISTICS AFTER ANEURYSM FORMATION)

  • 김소윤;노경철;유홍선
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.64-71
    • /
    • 2011
  • Cerebral aneurysm mostly occurs at a bifurcation of the circle of Willis. When the cerebral aneurysm is ruptured, a disease like subarachnoid hemorrhage and stroke is caused and this can be even deadly for patients. Generally it is known that causes of the intracranial aneurysm are a congenital deformity of the artery and pressure or shear stress from the blood flow. A blood flow pattern and the geometry of the blood vessel are important factors for the aneurysm formation. Research for several hemodynamic indices has been performed and these indices can be used for the prediction of aneurysm initiation and rupture. Therefore, the numerical analysis was performed for hemodynamic characteristics of the blood flow through the cerebral artery applying the various bifurcation angle and flow rate ratio. We analyze the flow characteristics using indices from the results of the numerical simulation. In addition, to investigate the flow pattern in the aneurysm according to the bifurcation angle and the flow rate ratio, we performed the numerical simulation on the supposition that the aneurysm occurs.

마이크로 PIV를 이용한 미세튜브 내부 조류 혈액유동에 관한 실험적 연구 (Experimental Investigation on Flow Characteristics of Chicken Blood in a Micro Tube Using a Micro-PIV Technique)

  • 여창섭;지호성;이상준
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1027-1034
    • /
    • 2006
  • In order to investigate flow characteristics of chicken blood in a micro tube of 100$\mu$m in diameter, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, 2-head Nd:YAG laser, 12 bit cooled CCD camera and a delay generator. Chicken blood with 40% hematocrit was supplied into a micro tube using a syringe pump. The blood flow shows clearly the cell free layer near the tube wall and its thickness is increased with increasing the flow speed. The hemorheological characteristics of chicken blood, including shear rate and shear stress were estimated from the PIV velocity field data obtained. Since the aggregation index of chicken blood is less than 50% of human blood, non-Newtonian flow characteristics of chicken blood are smaller than those of human blood. As the flow rate increases, the degree of flatness in the velocity profile at the center region is decreased and the parabola-shaped shear stress distribution becomes to have a linear profile. Under the same flow rate, chicken blood shows higher shear stress, compared with human blood.

Micro PIV 를 기반한 혈액 점도 측정 기법 (Microfluidic Method for Measurement of Blood Viscosity based on Micro PIV)

  • 홍현지;정미림;염은섭
    • 한국가시화정보학회지
    • /
    • 제15권3호
    • /
    • pp.14-19
    • /
    • 2017
  • Increase of blood viscosity significantly changes the flow resistance and wall shear stress which are related with cardiovascular diseases. For measurement of blood viscosity, microfluidic method has proposed by monitoring pressure between sample and reference flows in the downstream of a microchannel with two inlets. However, it is difficult to apply this method to unknown flow conditions. To measure blood viscosity under unknown flow conditions, a microfluidic method based on micro particle image velocimetry(PIV) is proposed in this study. Flow rate in the microchannel was estimated by assuming velocity profiles represent mean value along channel depth. To demonstrate the measurement accuracy of flow rate, the flow rates measured at the upstream and downstream of a T-shaped microchannel were compared with injection flow rate. The present results indicate that blood viscosity could be reasonably estimated according to shear rate by measuring the interfacial width and flow rate of blood flow. This method would be useful for understanding the effects of hemorheological features on the cardiovascular diseases.

전방순환동맥류 발생 위치에 대한 혈류량 및 분지각의 영향 및 동맥류 발생 전후의 유동 변화에 관한 수치해석 연구 (NUMERICAL ANALYSIS FOR THE EFFECT OF BLOOD FLOW RATE AND BIFURCATION ANGLE ON THE LOCATION OF ANTERIOR CIRCULATION ANEURYSM AND THE CHANGE OF BLOOD FLOW CHARACTERISTICS AFTER ANEURYSM FORMATION)

  • 김소윤;노경철;유홍선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.161-168
    • /
    • 2011
  • Cerebral aneurysm mostly occurs at a bifurcation of the circle of Willis. When the cerebral aneurysm is ruptured a disease like subarachnoid hemorrhage and stroke is caused and this can be even deadly for patients. Generally it is known that causes of the intracranial aneurysm are a congenital deformity of the artery and pressure or shear stress from the blood flow. A blood flow pattern and the geometry of the blood vessel are important factors for the aneurysm formation. Research for several hemodynamic indices has been performed and these indices can be used for the prediction of aneurysm initiation and rupture. Therefore, the numerical analysis was performed for hemodynamic characteristics of the blood flow through the cerebral artery applying the various bifurcation angle and flow rate ratio. We analyze the flow characteristics using indices from the results of the numerical simulation. In addition, to investigate the flow pattern in the aneurysm according to the bifurcation angle and the flow rate ratio, we performed the numerical simulation on the supposition that the aneurysm occurs.

  • PDF

Analysis of Blood Flow-dependent Blood Nitric Oxide Level and Half-life of Nitric Oxide in Vivo

  • Kim Cuk-Seong;Kim Hyo-Shin;Lee Young-Jun;Park Jin Bory;Ryoo Sung-Woo;Chang Seok-Jang;Jeon Byeong-Hwa
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제1권2호
    • /
    • pp.13-19
    • /
    • 2003
  • Endothelial release of nitric oxide (NO) contributes to the regulation of vascular tone by inducing vascular relaxation. To estimate the blood flow-dependent nitric oxide level and half-life (T1/2) of nitric oxide in vivo state, we investigated the change of aortic NO currents during the change of aortic blood flow rate using NO-selective electrode system and electromagnetic flowmeter in the aorta of anesthetized rats. Resting mean aortic blood flow rate was $49.6{\pm}5.6ml/min$ in the anesthetized rats. NO currents in the aorta were increased by the elevation of blood pressure and/or blood flow rate. When the aortic blood flow was occluded by the clamping, aortic NO currents were decreased. The difference of NO concentration between resting state and occluded state was $1.34{\pm}0.26{\mu}M$ (n=7). This NO concentration was estimated as blood flow-dependent nitric oxide concentration in the rats. Also, while the aortic blood flow was occluded, NO currents were decreased with exponential pattern with $12.84{\pm}2.15$ seconds of time constant and $7.70{\pm}1.07$ seconds of half-life. To summarize, this study suggested that blood flow-dependent NO concentration and half-life of nitric oxide were about $1.3{\mu}M$ and 7.7 seconds, respectively, in the aorta of anesthetized rats. The nitric oxide-selective electrode system is useful for the direct and continuous measurement of NO in vivo state.

  • PDF

Transcranial Doppler를 이용(利用)한 태음인 중풍환자의 혈류속도(血流速度)와 혈관(血管) 반응성(反應性)에 대한 임상적(臨床的) 고찰(考察) (Clinical study of blood flow and vascular reaction in Taeumin CVA patients using Transcranial Doppler)

  • 임종필;배나영;한경수;안택원
    • 혜화의학회지
    • /
    • 제15권2호
    • /
    • pp.263-272
    • /
    • 2006
  • Purpose Brain vessles have autoregulation function, so even when perfusion pressure drops, cerebral blood flow remain stable by vasodilation. Latest research on this reserve of cerebral vessels is being done using TCD, which measures the reserve of the vessels. We did a research comparing cerebral vessel and peripheral vessel reserve between Taeumin, who are more likely to suffer CVA, and the normal. We observed blood flow of Internal carotid artery siphon and radial indicis artery of the two group with TCD. Method We picked 20 people out of patients diagnosed as cerebral infarction at Cheon-An Oriental hospital of Daejeon University. They were diagnosed as Taeumin with QSCCII questionnaire and constitutional differentiation. Using TCD, we measured highest blood flow rate, mean blood flow and asymmetric counting blood flow of Internal carotid artery siphon and radial indicis artery at rest. And then we measured again after stimulating cerebral vessels, by triggering hypercapnia by self apnea and peripheral vessels by palm heating. Result At rest, mean blood flow rate of Internal carotid artery siphon showed significant decrease compared to control group. Blood flow rate of Internal carotid artery siphon after hypercapnia showed significant decline in highest blood flow rate and mean blood flow compared to control group. Cerebral vessel reaction after the hypercapnia induction showed great change in experiment group than the control group. Peripheral vessel reaction after palm heating showed significant decline in experiment group compared to control group. Conclusion In conclusion, measuring the alteration of blood flow used in diagnosing cerebral infarction, is more sensitive when vessel stimulation is done. Non-invasive TCD is effective especially in case of Taeumin who are more likely to suffer vascular disorder than others.

  • PDF

Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery

  • Nagarani, P.;Sarojamma, G.
    • Korea-Australia Rheology Journal
    • /
    • 제20권4호
    • /
    • pp.189-196
    • /
    • 2008
  • The pulsatile flow of blood through a stenosed artery under the influence of external periodic body acceleration is studied. The effect of non-Newtonian nature of blood in small blood vessels has been taken into account by modeling blood as a Casson fluid. The non-linear coupled equations governing the flow are solved using perturbation analysis assuming that the Womersley frequency parameter is small which is valid for physiological situations in small blood vessels. The effect of pulsatility, stenosis, body acceleration, yield stress of the fluid and pressure gradient on the yield plane locations, velocity distribution, flow rate, shear stress and frictional resistance are investigated. It is noticed that the effect of yield stress and stenosis is to reduce flow rate and increase flow resistance. The impact of body acceleration is to enhance the flow rate and reduces resistance to flow.

혈액투석 시 투석액 속도가 투석적절도와 피로에 미치는 효과 (The Effect of Dialysate Flow Rate on Dialysis Adequacy and Fatigue in Hemodialysis Patients)

  • 차선미;민혜숙
    • 대한간호학회지
    • /
    • 제46권5호
    • /
    • pp.642-652
    • /
    • 2016
  • Purpose: In this single repeated measures study, an examination was done on the effects of dialysate flow rate on dialysis adequacy and fatigue in patients receiving hemodialysis. Methods: This study was a prospective single center study in which repeated measures analysis of variance were used to compare Kt/V urea (Kt/V) and urea reduction ratio (URR) as dialysis adequacy measures and level of fatigue at different dialysate flow rates: twice as fast as the participant's own blood flow, 500 mL/min, and 700 mL/min. Thirty-seven hemodialysis patients received all three dialysate flow rates using counterbalancing. Results: The Kt/V ($M{\pm}SD$) was $1.40{\pm}0.25$ at twice the blood flow rate, $1.41{\pm}0.23$ at 500 mL/min, and $1.46{\pm}0.24$ at 700 mL/min. The URR ($M{\pm}SD$) was $68.20{\pm}5.90$ at twice the blood flow rate, $68.67{\pm}5.22$ at 500 mL/min, and $70.11{\pm}5.13$ at 700 mL/min. When dialysate flow rate was increased from twice the blood flow rate to 700 mL/min and from 500 mL/min to 700 mL/ min, Kt/V and URR showed relative gains. There was no difference in fatigue according to dialysate flow rate. Conclusion: Increasing the dialy-sate flow rate to 700 mL/min is associated with a significant increase in dialysis adequacy. Hemodialysis with a dialysate flow rate of 700 mL/min should be considered in selected patients not achieving adequacy despite extended treatment times and optimized blood flow rate.