• Title, Summary, Keyword: Bluetooth

Search Result 1,392, Processing Time 0.047 seconds

Study on the Smart 1RM System Development and Effect Verification for Health Improvement and Management of National Healthcare (국민 건강관리 및 체력증진을 위한 스마트 1RM 시스템 개발 및 효과 검증에 관한 연구)

  • Woo, Kyung-Min;Shin, Mi-Yeon;Yu, Chang-Ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.12 no.1
    • /
    • pp.53-62
    • /
    • 2018
  • In this study, we developed a smart 1RM system for national health management and physical fitness, which enables quantitative 1RM measurement in various types of exercise using digital pulley technology, and to test the effect on training by using it. We developed the smart 1RM system, which is composed of portable muscle strength measuring device, Bluetooth communication based mobile phone data transmission and circuit diagram, and height adjustable system body. We recruited the 30 participants with 20th aged and divided into training and non-performing groups with 15 participants randomly. The participants performed 5 sets of elbow, lumbar, knee extension / flexion 10 times using smart 1RM system and the experimental period was 3 days a week for a total of 8 weeks. The experimental results showed that the maximum strength of the elbow, lumbar, and knee joints was significantly improved before and after maximal muscle strength training in the training group. Oxygen intakes during 1RM exercise mode showed 10.91% than endurance. To verify the validity of the smart 1RM maximal strength data, the reliability was 0.895 (* p <0.00). This study can be applied to the early rehabilitation treatment of the elderly and rehabilitation patients more quantitatively using the national health care.

A Study on the Practice of Engineering Education in Graduation Standards Certification Process through the Design and Implementation of Drone for Ground Driving and Aerial Flight (지상주행과 공중비행이 가능한 Drone 설계 및 구현을 통한 졸업기준 인증 과정에서 공학교육 실천에 관한 연구)

  • Jang, Woo-Jin;Yoo, Jeong-Min;Chang, Eun-Young
    • Journal of Practical Engineering Education
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Through the design and production of works for the third semester as a major unit, It is proposed the process of satisfying the graduation standards with the design and production process of the drone which can be applied to various mobile environments. Using the shape of Ring Propeller, it is made to be able to play both the role of generating lift as a propeller and the role of a wheel that touches the ground through the surface of the rim. In addition, the Servo Motor is used to convert the drive shaft of the motor to the correct angle according to the command. Then, based on the idea, the 3D printing is implemented to confirm the result of the configuration, and the circuit for driving the propulsion is designed and manufactured. As a result, the conversion of the desired propulsion system during air navigation and operation failed due to the weight increase of the propellant. It is confirmed that the size of the thrust and the tolerance limit of the ring propeller are the errors. Through these processes, it has been recognized to have experience of creative thinking and cooperation through engineering approach and comprehensive design, and confirmed to satisfy the graduation criteria by writing an engineering paper on the result.

Development of Self-trainer Fitness Wear Based on Silicone-MWCNT Sensor (실리콘-탄소나노튜브 센서 기반의 셀프트레이너 피트니스 웨어 개발)

  • Cho, Seong-Hun;Kim, Kyung-Mi;Cho, Ha-Kyung;Won, You-Seuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.493-503
    • /
    • 2018
  • Recently, as living standards have improved, many people are becoming more interested in health, and self-training is increasing through exercise to prevent and manage pre-illness. In general, an imbalance of muscles causes asymmetry of posture, which can cause various diseases by accompanying an adjustment force, circulation action, displacement of internal organs, etc.. In this study, the development of fitness software that can be self - training among smart wears has attracted considerable attention in recent years. In this study, a technology was proposed for the commercialization of self - trainer fitness wear by a simulation through Android - based applications. Self - trainer fitness software was developed by combining a conductive polymer, fashion design, sewing, and electric and electronic technology to monitor the unbalance of the muscles during exercise and make smart wear that can calibrate the asymmetry by oneself. In particular, a polymer sensor was fabricated by deriving the optimal MWCNT concentration, and the electrode signal was collected by attaching the electrode to the optimal position, where the electrode signal line using the conductive fiber was designed and attached to collect the signal. A signal module that converts the bio-signals collected through electrical signal conversion and transmits them using Bluetooth communication was designed and manufactured. Self-trainer fitness software that can be commercialized was developed by combining noise cancellation with Android-based self-training application using a software algorithm method.

The Development of the Smart Sensibility Mat with Kangaroo Mother Care (캥거루 케어를 반영한 스마트 감성 매트의 개발)

  • Cho, Soo-Min
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.171-178
    • /
    • 2017
  • 'Smart Sensibility Mat (SSM)' was developed and manufactured for positive sensibility of newborn with fiber, digital, and sensibility technology to reflect features and advantages of kangaroo care. For tactile stimuli, the tube of the silicon material to provide a constant temperature of $32^{\circ}C$ was inserted into the mat and connected to the water-thermostat. To provide a uniform temperature throughout the mat, the fabric by the inserting conductive yarn was attached to the mat surface. After wrapping the mat with cotton pad, the polyurethane foam used as medicine in order to similar to the human skin was bonded to the surface of the mat. To provide the auditory stimuli of a level of 30dB with mother's heartbeat sounds and voice recorded in advance, the Bluetooth speaker was inserted into the mat. To investigate the effects of SSM, 10 newborns who born within two weeks were involved in this experiment. While the baby was lying on each of the general mat (GM) and SSM, the baby's physiological signals-heart rate, breathing rate, temperature- were measured and then, those were conducted t-test to examine the difference between the signals of SSM and GM. The results were as follows: heart rate (t=8.131, p<.001) and respiratory rate (t=7.227, p<.001) among the physiological signals of SSM decreased significantly than GM within the normal range. Temperature (t=1.062, p=0.292) at SSM showed a tendency to decrease than GM within the normal range. This means the tactile stimuli and the auditory stimuli providing from SSM give stable physiological responses. Thus, SSM leads to have psychological comfort and stability of newborns.

Efficient Coverage Guided IoT Firmware Fuzzing Technique Using Combined Emulation (복합 에뮬레이션을 이용한 효율적인 커버리지 가이드 IoT 펌웨어 퍼징 기법)

  • Kim, Hyun-Wook;Kim, Ju-Hwan;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.5
    • /
    • pp.847-857
    • /
    • 2020
  • As IoT equipment is commercialized, Bluetooth or wireless networks will be built into general living devices such as IP cameras, door locks, cars and TVs. Security for IoT equipment is becoming more important because IoT equipment shares a lot of information through the network and collects personal information and operates the system. In addition, web-based attacks and application attacks currently account for a significant portion of cyber threats, and security experts are analyzing the vulnerabilities of cyber attacks through manual analysis to secure them. However, since it is virtually impossible to analyze vulnerabilities with only manual analysis, researchers studying system security are currently working on automated vulnerability detection systems, and Firm-AFL, published recently in USENIX, proposed a system by conducting a study on fuzzing processing speed and efficiency using a coverage-based fuzzer. However, the existing tools were focused on the fuzzing processing speed of the firmware, and as a result, they did not find any vulnerability in various paths. In this paper, we propose IoTFirmFuzz, which finds more paths, resolves constraints, and discovers more crashes by strengthening the mutation process to find vulnerabilities in various paths not found in existing tools.

A Study of Mobile Patient Identification System Using EM4095 (EM4095를 이용한 모바일 의료환자인식 시스템 연구)

  • Jo, Heung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2337-2342
    • /
    • 2010
  • There is a vast field of application for RFID(Radio Frequency IDentification) technology. In the case of hospitals, RFID can be used for organizing patient data. Generally, patient data has been handled with medical cards. In order to look up data about a patient, the medical card would have to be found first, within a lot of other medical cards, by hand or with a computer. This is a very inconvenient system. Also, if the card is searched by the name of the patient, fatal medical accidents may occur in cases of mix-ups. If remote RFID Tag monitoring systems are applied in this case, the patient data would be accessible in the hospital. This article will discuss the grafting of RFID systems and wireless data communicating technology. The EM4095 chip, which uses 125KHz carrier waves was used in this study. And a Bluetooth module was added for wireless data communication. The ATMEGA128 microcomputer was used to control the RFID system and wireless module. A LCD monitor was connected to the extension port for nurses to view patient data, and also, the same information was displayed on PC monitors for doctors to see. The circuit was designed to consume minimal amounts of electricity for portability, and to transmit Tag ID's in environments with a lot of noise. The article is concluded with a diagram of the whole system, and performance of each data transmitting section has been analyzed.

Accident Prevention and Safety Management System for a Children School Bus (어린이 통학버스 사고 방지 및 안전 관리 시스템)

  • Kim, Hyeonju;Lee, Seungmin;Ham, Sojeong;Kim, Sunhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.446-452
    • /
    • 2020
  • As the use of children's school buses increases, accidents caused by the negligence of school bus drivers and ride carers have also increased significantly. To prevent such accidents, the government is coming up with various policies. We propose an accident prevention and safety management system for children's school buses. Through this system, bus drivers can easily check whether each child is seated and whether the seat belt is used, so it is possible to quickly respond to children's conditions while driving. With the ability to recognize faces by analyzing camera images, children can use a seat belt that is automatically adjusted to their height. It is therefore possible to prevent secondary injuries that may occur in the event of a traffic accident. In addition, a sleeping child-check system is provided to confirm that all children get off the bus, and a text service is provided to inform parents of their children's locations in real time. Based on Raspberry Pi, the system is implemented with cameras, pressure sensors, motors, Bluetooth modules, and so on. This proposed system was attached to a bus model to confirm that the series of functions work correctly.

Design of Embedded Security Controller Based on Client Authentication Utilizing User Movement Information (사용자의 이동정보를 활용한 클라이언트 인증 기반의 임베디드 보안 컨트롤러 설계)

  • Hong, Suk-Won
    • Journal of Digital Convergence
    • /
    • v.18 no.3
    • /
    • pp.163-169
    • /
    • 2020
  • A smart key has been used in a variety of embedded environments and there also have been attacks from a remote place by amplifying signals at a location of a user. Existing studies on defence techniques suggest multiple sensors and hash functions to improve authentication speed; these, however, increase the electricity usage and the probability of type 1 error. For these reasons, I suggest an embedded security controller based on client authentication and user movement information improving the authentication method between a controller and a host device. I applied encryption algorithm to the suggested model for communication using an Arduino board, GPS, and Bluetooth and performed authentication through path analysis utilizing user movement information for the authentication. I found that the change in usability was nonsignificant when performing actions using the suggested model by evaluating the time to encode and decode. The embedded security controller in the model can be applied to the system of a remote controller for a two-wheeled vehicle or a mobile and stationary host device; in the process of studying, I found that encryption and decryption could take less then 100ms. The later study may deal with protocols to speed up the data communication including encryption and decryption and the path data management.

A Case Study on Electronic Recognition Sensor for Underground Facility Management System (지중 매설물 이력 관리 시스템 개발을 위한 전자인식기의 현장 적용성 검증 연구)

  • Jung, YooSeok;Kim, Soullam;Kim, Byungkon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.777-785
    • /
    • 2021
  • Many utility lines are buried underground to provide various functions of the city. Because historical records are not managed systematically, damage has occurred during excavation. In addition, the demand for an underground facility management system is increasing as the aerial underground project is progressing. By attaching an electronic recognition sensor to an underground facility, such as pipelines, the management history and site conditions can be carefully managed. Therefore, in this study, electronic recognition sensors, such as BLE Beacon, UHF RFID, geomagnetic sensor, and commercial marker, were tested to analyze the strengths, weaknesses, and field applicability through a pilot project. According to the limited research results collected through two pilot projects, the installation depth is most important to demonstrate the performance of the electronic reader. In addition, because it should be used in urban areas, the influence of environmental interference should be minimized, and there should be no performance degradation over time. In the case of the geomagnetic recognizer, the effect of environmental interference was large, and performance degradation occurred over time using the BLE Beacon. In the field situation, where the installation depth can be controlled to less than 40cm, the utility of the battery-free UHF RFID was the best.

Study of system using load cell for real time weight sensing of artificial incubator (인공부화기의 실시간 중량감지를 위한 로드셀을 이용한 시스템 연구)

  • jeong, Jin-hyoung;Kim, Ae-kyung;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.144-149
    • /
    • 2018
  • The eggs are incubated for 18 days through the generator and incubated in the developing incubator. During the developmental period, the weight loss of the fetus is correlated with the ventricular formation, and the proper ventricular formation is also associated with the healthy embryonic hatching and the egg hatching rate. However, in the incubator period of the domestic hatchery, it is a reality to acquire the resultant side by the Iranian standard weight measurement with the experience of the hatchery and the person concerned and the development period without the apparatus for measuring the present weight. As a result, prevalence of early mortality, hunger and illness during hatching are frequent. Monitoring the reduction of weaning weight is crucial to obtaining chick quality and hatching performance with weight changes within the development machine. Water loss is different depending on the size of eggs, egg shell, and elder group. We can expect to increase the hatching rate by measuring the weight change in real time and optimizing the ventilation change accordingly. There is a need to develop a real-time measurement system that can control 10 to 13% reduction of the total weight during hatching. The system through this study is a way to check the one - time directly when moving the existing egg, and it is impossible to control the measurement of the fetal water evaporation within the development period. Unlike systems that do not affect the hatching rate, four load cells are connected in parallel on the Arduino sketch board and the AT-command command is used to connect the mobile phone and computer in real time. The communication speed of Bluetooth was set to 15200 to match the communication speed of Arduino and Hyper-terminal program. The real - time monitoring system was designed to visually check the change of the weight of the fetus in the artificial incubator. In this way, we aimed to improve the hatching rate and health condition of the hatching eggs.