• Title/Summary/Keyword: Body motion with large amplitude

Search Result 14, Processing Time 0.024 seconds

Numerical Simulation of Body Motion Using a Composite Grid System (중첩 격자계를 이용한 물체운동의 수치 시뮬레이션)

  • 박종천;전호환;송기종
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.36-42
    • /
    • 2003
  • A CFD simulation technique has been developed to handle the unsteady body motion with large amplitude by use of overlapping multi-block grid system. The three-dimensional, viscous and incompressible flow around body is investigated by solving the Navier-Stokes equations, and the motion of body is represented by moving effect of the grid system. Composite grid system is employed in order to deal with both the body motion with large amplitude and the condition of numerical wave maker in convenience at the same time. The governing equations, Navier-Stokes (N-S) and continuity equations, are discretized by a finite volume method, in the framework of an O-H type boundary-fitted grid system (inner grid system including test model) and a rectangular grid system (outer grid system including simulation equipments for generation of wave environments). If this study, several flow configurations, such as an oscillating cylinder with large KC number, are studied in order to predict and evaluate the hydrodynamic forces. Furthermore, the motion simulation of a Series 60 model advancing in a uniform flow under the condition of enforced roll motion of angle 20$^{\circ}$ is performed in the developed numerical wave tank.

Large Amplitude Heave and Roll Simulations by the Chimera RANS Method

  • Kang, Chang-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • An oscillating body motion with extremely large amplitude has been studied using the viscous flow solver. Time simulations of oscillating ship hull in prescribed heave and roll motions are presented using RANS method with FAM approach (Chen, 1995). For viscous flows, laminar flow and turbulent flow with $textsc{k}$-$\varepsilon$ model are considered and compared. The viscous flow solver of RANS method is performed together with a Chimera type of multi-block grid system to demonstrate the advantage of accurate and efficient zonal approach. In the present study, effects of viscosity and oscillation degree are discussed using Re=1000 and Re=1000000. Large motion of oscillating body shows clear vortex propagation that is not possible for inviscid flow to present.

  • PDF

On Two-Dimensional Large-Amplitude Motions in Regular Wave (규칙파중에서의 주상체의 대진폭 운동에 관한 연구)

  • Yong-Jig,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.25-31
    • /
    • 1989
  • Two-dimensional large-amplitude motions in regular harmonic wave are treated in time domain, by satisfying the exact body boundary condition and the linear free surface condition. For the present numerical calculation, the method of free-surface spectral representation with simple source distribution on the instantaneous body surface has been extended to include the effect of the incident wave. Calculations of the wave exciting force are performed for a submerged circular cylinder fixed or oscillating with large amplitude. Especially, nonlinear effects on the time-mean forces are studied in detail. It is shown that relative motion between the body and the fluid particle gives a significant effect on the lift and drift forces. Also, large-amplitude motion of a submerged circular cylinder and that of a floating Lewis-form cylinder are directly simulated in time domain. In the calculation results, some nonlinear effects are shown.

  • PDF

Analysis of Large-Amplitude Ship Motions Using a Cartesian-Gridbased Computational Method (직교격자 기반 수치기법을 이용한 선박의 대변위 운동해석)

  • Yang, Kyung-Kyu;Nam, Bo-Woo;Lee, Jae-Hoon;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.461-468
    • /
    • 2012
  • In this study, a Cartesian-grid method based on finite volume approach is applied to simulate the ship motions in large amplitude waves. Fractional step method is applied for pressure-velocity coupling and TVD limiter is used to interpolate the cell face value for the discretization of convective term. Water, air, and solid phases are identified by using the concept of volume-fraction function for each phase. In order to capture the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with weighed line interface calculation (WLIC) method which considers multidimensional information. The volume fraction of solid body embedded in the Cartesian grid system is calculated using a level-set based algorithm, and the body boundary condition is imposed by a volume weighted formula. Numerical simulations for the two-dimensional barge type model and Wigley hull in linear waves have been carried out to validate the newly developed code. To demonstrate the applicability for highly nonlinear wave-body interactions such as green water on the deck, numerical analysis on the large-amplitude motion of S175 containership is conducted and all computational results are compared with experimental data.

CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping

  • Borna, Amir;Habashi, Wagdi G.;McClure, Ghyslaine;Nadarajah, Siva K.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.411-431
    • /
    • 2013
  • A computational study of vortex-induced transverse vibrations of a cylinder with low mass-damping is presented. An Arbitrary Lagrangian-Eulerian (ALE) formulation of the Unsteady Reynolds-Averaged Navier-Stokes equations (URANS), along with the Spalart-Allmaras (SA) one-equation turbulence model, are coupled conservatively with rigid body motion equations of the cylinder mounted on elastic supports in order to study the amplitude and frequency response of a freely vibrating cylinder, its flow-induced motion, Vortex Street, near-wake flow structure, and unsteady loading in a moderate range of Reynolds numbers. The time accurate response of the cylinder from rest to its limit cycle is studied to explore the effects of Reynolds number on the start of large displacements, motion amplitude, and frequency. The computational results are compared with published physical experiments and numerical studies. The maximum amplitudes of displacements computed for various Reynolds numbers are smaller than the experimental values; however, the overall agreement of the results is quite satisfactory, and the upper branch of the limit-cycle displacement amplitude vs. reduced velocity response is captured, a feature that was missed by other studies. Vortex shedding modes, lock-in phenomena, frequency response, and phase angles are also in agreement with experiments.

Effects on Nonlinear Ship Motions on Ship Maneuvering in Large Amplitude Waves (비선형 선박운동을 고려한 대파고 파랑 중 조종성능에 대한 연구)

  • Seo, Min-Guk;Kim, Yong-Hwan;Kim, Kyong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.516-527
    • /
    • 2011
  • This paper considers a numerical analysis of ship maneuvering performance in the high amplitude incident waves by adopting linear and nonlinear ship motion analysis. A time-domain ship motion program is developed to solve the wave-body interaction problem with the ship slip speed and rotation, and it is coupled with a modular type 4-DOF maneuvering problem. Nonlinear Froude-Krylov and restoring forces are included to consider weakly nonlinear ship motion. The developed method is applied to observe the nonlinear ship motion and planar trajectories in maneuvering test in the presence of incident waves. The comparisons are made for S-175 containership with existing experimental data. The nonlinear computation results show a fair agreement of overall tendency in maneuvering performance. In addition, maneuvering performances with respect to wave slope is predicted and reasonable results are observed.

On the Nonlinear Hydrodynamic Forces due to Large Amplitude Forced Oscillations (대진폭강제동요시(大振幅强制動搖時)의 비선형유체력(非線型流體力)에 관한 연구(硏究))

  • J.H.,Hwang;Y.J.,Kim;S.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.1-13
    • /
    • 1986
  • The nonlinear hydrodynamic forces acting on a two-dimensional circular cylinder, oscillating with large amplitude in the free surface, are calculated by using the Semi-Lagrangian Time-Step-ping Method used by O.M. Faltinsen. In present calculation the position and the potential value of free surface are calculated using the exact kinematic and dynamic free surface boundary condition. At each time step an integral equation is solved to obtain the value of potential and normal velocity along the boundaries, consisting of both the body surface and the free surface. Some effort was devoted to the elimination of instability arising in the range of high frequency. Numerical simulations were performed up to the 3rd or 4th period which seems to be enough for the transient effect to die out. Each harmonic component and time-mean force are obtained by the Fourier transform of forces in time domain. The results are compared with others' experimental and theoretical results. Particularly, the calculation shows the tendency that the acceleration-phase 1st-harmonic component(added mass) increases as the motion amplitude increases and a reverse tendency in the velocity-phase 1st-harmonic component(damping coefficient). The Yamashita's experimental result also shows the same tendency. In general, the present result show relatively good agreement with the Yamashita's experimental result except for the time-mean force.

  • PDF

Studies on Variable Liquid-Column Oscillator for High Efficiency Floating Wave Energy Conversion System (가변 수주진동장치를 이용한 고효율 파력발전에 관한 연구)

  • Yang, Dong-Soon;Cho, Byung-Hak
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.15-24
    • /
    • 2009
  • The results of a simulation study of variable liquid column oscillations in U-tanks with a novel control scheme are presented. The configuration under investigation is analogous to that of the tuned liquid-column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. However, by virtue of an adequate controller, the response of amplitude of the U-tanks becomes larger in a desired frequency range. The motion of wave energy conversion system equipped with a variable liquid column oscillator is described by a series of nonlinear differential equations. The equations describe the motion of body under ocean wave excitation, and the motion of liquid with an air-spring effect caused by the compression and expansion of air in vertical liquid columns and air chambers. It is shown that the effect of the air-spring has a vital role to maintain the natural frequency of oscillation in the system to synchronize with the frequency of the ocean wave, thus the system provides the most effective mode for energy extraction from the ocean.

A Strength Analysis of a Hull Girder in a Rough Sea

  • Kim, Sa-Soo;Shin, Ku-Kyun;Son, Sung-Wan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.79-105
    • /
    • 1994
  • A ship in waves is suffered from the various wave loads that comes from its motion throughout its life. Because these loads are dynamic, the analysis of a ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship motion calculation as a rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, compared with ship's depth, induce the large ship motion, so the ship section configuration under waterline is rapidly changed at each time. This results in a non-linear problem. Considering above situation in this paper, a strength analysis method is introduced for the hull girder among waves considering non-linear hydrodynamic forces. This paper evaluates the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom flare impact forces by momentum slamming theory. For numerical calculation a ship is idealized as a hollow thin-walled box beam using thin walled beam theory and the finite element method is used. This method applied to a 40,000 ton double hull tanker and attention is paid to the influence of the response of the ship's speed, wave length and wave height compared with the linear strip theory.

  • PDF

Effect of lateral differential settlement of high-speed railway subgrade on dynamic response of vehicle-track coupling systems

  • Zhang, Keping;Zhang, Xiaohui;Zhou, Shunhua
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.491-501
    • /
    • 2021
  • A difference in subgrade settlement between two rails of a track manifests as lateral differential subgrade settlement. This settlement causes unsteadiness in the motion of trains passing through the corresponding area. To illustrate the effect of lateral differential subgrade settlement on the dynamic response of a vehicle-track coupling system, a three-dimensional vehicle-track-subgrade coupling model was formulated by combining the vehicle-track dynamics theory and the finite element method. The wheel/rail force, car body acceleration, and derailment factor are chosen as evaluation indices of the system dynamic response. The effects of the amplitude and wavelength of lateral differential subgrade settlement as well as the driving speed of the vehicle are analyzed. The study reveals the following: The dynamic responses of the vehicle-track system generally increase linearly with the driving speed when the train passes through a lateral subgrade settlement area. The wheel/rail force acting on a rail with a large settlement exceeds that on a rail with a small settlement. The dynamic responses of the vehicle-track system increase with the amplitude of the lateral differential subgrade settlement. For a 250-km/h train speed, the proposed maximum amplitude for a lateral differential settlement with a wavelength of 20 m is 10 mm. The dynamic responses of the vehicle-track system decrease with an increase in the wavelength of the lateral differential subgrade settlement. To achieve a good operation quality of a train at a 250-km/h driving speed, the wavelength of a lateral differential subgrade settlement with an amplitude of 20 mm should not be less than 15 m. Monitoring lateral differential settlements should be given more emphasis in routine high-speed railway maintenance and repairs.