• Title/Summary/Keyword: Bond rupture

Search Result 53, Processing Time 0.031 seconds

Radiolysis of Oxygenated and Deoxygenated Glycylglycylglycine in Aqueous Solution and in the Solid State (酸素의 存在下와 無酸素下에서의 水溶液 및 固體 Glycylglycylglycine의 放射線分解)

  • Kang, Man-Sik
    • The Korean Journal of Zoology
    • /
    • v.13 no.3
    • /
    • pp.75-84
    • /
    • 1970
  • Gamma-radiolyses of oxygenated and deoxygenated glycylglycylclycine in aqueous solution and in the solid state are observed, with special regards to peptied bond rupture for elucidation of radiolytic mechanism of proteins, by means of chromatorgraphic separation of degradation products, spectrophotometric quantitation of carbonyl compounds, micro-titration of amide formation, infrared spectrophptometry, and ultraviolet spectrophotometry for evaluation of radiation damage. Essential difference of peptide bond rupture is observed in solution and in the solid state, being high in the former and negligible in the latter. On the other hand, the presence of and obsence of oxygen in solution during irradiation are not so significant with respect to peptide bond rupture, except the recombination of free-radicals produced in deoxygenated solution. Peptide bond rupture in solution is attributable to the mechanisms proposed by Garrison et al.; dehydrogenation followed by hydrolysis to yield acid amide and carbonyl function as found on the basis of radiolytic products. Peptide bond attack at $\\alpha$-carbon locus might be suggestive for irradiated solid but not significant in view of low degree of peptide bond rupture.

  • PDF

Fuzzy logic approach for estimating bond behavior of lightweight concrete

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.233-245
    • /
    • 2014
  • In this paper, a rule based Mamdani type fuzzy logic model for prediction of slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes were discussed. In the model steel rebar diameters and development lengths were used as inputs. The FL model and experimental results, the coefficient of determination R2, the Root Mean Square Error were used as evaluation criteria for comparison. It was concluded that FL was practical method for predicting slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes.

Molecular Bonding Force and Stiffness in Amine-Linked Single-Molecule Junctions Formed with Silver Electrodes

  • Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.132-135
    • /
    • 2015
  • Bonding force and stiffness in amine-linked single-molecule junctions for Ag electrodes were measured using a home-built conducting atomic force microscope under ambient conditions at room temperature. For comparison, Au electrodes were used to measure the rupture force and stiffness of the molecular junctions. The traces of the force along with the conductance showed a characteristic saw-tooth pattern owing to the breaking of the metal atomic contacts or the metal-molecule- metal junctions. We found the rupture force and stiffness for Ag are smaller than those for Au electrodes. Furthermore, we observed that the force required to break the amine-Ag bond in the conjugated molecule, 1,4-benzenediamine, is smaller than in 1,4-butanediamine which is fully saturated. These results consist with the previous theoretical calculations for the binding energies of the nitrogen bonded to Ag or Au atoms.

An Experimental Study to Prevent Debdonding Failure of RC Beams Strengthened by Aramid Fiber Sheets (아라미드섬유쉬트로 휨 보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.84-87
    • /
    • 2004
  • Nominal flexural strength of RC members strengthened with FRP sheets is generally based on the tensile strength of composite materials obtained from coupon tests. This method is based on the assumption that bond failure does not occur until the FRP sheet reaches its rupture strength. According to the previous researches, however, bond failure often occurs before the FRP sheet reaches its rupture strength. Some attempts were made to control debonding failure by increasing the bonded length of sheet or wrapping the section around their side of the member(U-wrap). In this study, the flexural failure mechanism of RC beams strengthened with AFRP sheets with different bond lengths is investigated. Their strengthening details to prevent the premature debonding failure are also suggested and its effectiveness is verified.

  • PDF

Effect of the Sequence of Wax Addition, Wax Level and Type on Properties of Isocyanate-Bonded Particleboard (왁스첨가(添加) 순서(順序), 첨가량(添加量), 종류(種類)가 Isocyanate 접착(接着) PB의 성질(性質)에 미치는 영향(影響))

  • Kwon, Jin-Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.70-76
    • /
    • 1995
  • Research was conducted at the Wood Materials and Engineering Laboratory, Washington State University, Pullman, WA to evaluate the effects of the sequence of wax addition, wax level, and wax type on mechanical properties and water resistance performance of isocyanate-bonded particleboard. Mechanical properties and water resistance performance were not influenced significantly by the sequence of wax addition. Internal bond and wet modulus of rupture in bending strength were decreased significantly by increasing the wax emulsion level, but dry modulus of rupture and modulus of elasticity in bending strength were not decreased significantly by increasing the wax emulsion level. Dry internal bond, dry and wet moduli of rupture, and modulus of elasticity were not decreased by increasing the solid wax level except for wet internal bond. The addition of 1.0 and 1.5% wax level did not produce any significant additional water resistance effect when compared to the addition of 0.5% wax level. Internal bond values of boards with solid wax addition showed significantly better results than boards with just a wax emulsion added. Modulus of rupture, modulus of elasticity, and water resistance performance did not show significant difference between solid wax and wax emulsion.

  • PDF

A Development of Manufacturing Process of Wooden Footpath Block to Reuse of Wood Waste (목질폐잔재를 재활용한 목질보도블록 제조기술 개발)

  • Park, Hee-Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.96-104
    • /
    • 1997
  • The objective of this research project was to develop the wooden footpath block to reuse of wood waste. Some physical and mechanical properties of the wooden block such as water absorption, thickness swelling, modulus of rupture, internal bond, density profile and impact resistance were studied. Water absorption and thickness swelling of the wooden block were greatly reduced when the wooden block was pressed inside the forming device than by conventional hot pressing. Also, Modulus of rupture and internal bond of the wooden block were increased greatly when the pressing was completed inside the forming device. The density profile of the wooden block was improved up to 93.5%, minimum to average density ratio. The wooden block manufactured in this study have excellent physical and mechanical prperties in comparison with existing wood based materials. So, these wooden blocks are applicable to footpth block or other exterior members.

  • PDF

Mechanical Properties of Hwangtoh-Based Alkali-Activated Concrete

  • Yang, Keun-Hyeok;Hwang, Hey-Zoo;Lee, Seol
    • Architectural research
    • /
    • v.11 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • This study presents the testing of 15 hwangtoh-based cementless concrete mixes to explore the significance and limitations of the development of eco-friendly concrete without carbon dioxide emissions while maintaining various beneficial effects. Hwangtoh, which is a kind of kaolin, was incorporated with inorganic materials, such as calcium hydroxide, to produce a cement-less binder. The main variables investigated were the water-to-binder ratio and fine aggregate-to-total aggregate ratio to ascertain the reliable mixing design of hwangtoh-based cementless concrete. The variation of slump with elapsed time was recorded in fresh concrete specimens. Mechanical properties of hardened concrete were also measured: including compressive strength gain, splitting tensile strength, moduli of rupture and elasticity, stress-strain relationship, and bond resistance. In addition, mechanical properties of hwangtoh-based cement-less concrete were compared with those of ordinary portland cement (OPC) concrete and predictions obtained from the design equations specified in ACI 318-05 and CEB-FIP for OPC concrete, wherever possible. Test results show that the mechanical properties of hwangtoh-based concrete were significantly influenced by the water-to-binder ratio and to less extend by fine aggregate-to-total aggregate ratio. The moduli of rupture and elasticity of hwangtoh-based concrete were generally lower than those of OPC concrete. In addition, the stress-strain and bond stress-slip relationships measured from hwangtoh-based concrete showed little agreement with the design model specified in CEB-FIP. However, the measured moduli of rupture and elasticity, and bond strength were higher than those given in ACI 318-05 and CEB-FIP. Overall, the test results suggest that the hwangtoh-based concrete shows highly effective performance and great potential as an environmental-friendly building material.

$^{13}C$ NMR Studies of the Chelate Ring Opening-Closing Process in (Nitrilotriacetato)vanadate(V) dioxovandate(V) Ion

  • Lee, Man-Ho;Schaumburg, Kjeld
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.399-402
    • /
    • 1990
  • Activation parameters of the exchange between two types of glycinate groups in (nitrilotriacetato)dioxovanadate(V) ion, $[VO_2(NTA)]^{2-}$, have been determined as the results of $^{13}C$ NMR measurements over a range of temperatures between 277 and 306$^{\circ}K$. The exchange mechanism is proposed on the basis of the chelate ring opening-closing process, assuming rupture of the metal-oxygen (glycinate) bond trans to V = O bond to give a five-coordinated intermediate.

Studies on Comply-composites bonded with Particleboard and Veneer or Plywood (삭편판과 단판 또는 합판을 구성 접착한 콤플라이 복합재에 관한 연구)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.86-101
    • /
    • 1990
  • The primary objective of this research was to investigate the strength properties of Comply, a composite panel. fabricated with particle board as core material and veneer or plywood as face and back. 20types of comply composites were manufactured according to the four specific gravity levels(0.5, 0.6, 0.7 or 0.8) of particleboard core and three veneer or two plywood thicknesses for face and back. They were tested and compared with matching particleboard (control) on moisture content. specific gravity, bending properties(MOE, MOR SPL). nail resistance and internal bond strength. The obtained results were summarized as follows: The increasing effect of modulus of elasticity was shown by the increase of face and back veneer or plywood thickness. The modulus of rupture and stress at proportional limit of the comply composites bonded with 3mm thick veneers or 3mm thick plywood face and back were higher than 2mm thick veneer or 2mm thick plywood as face and back. Both of modulus of rupture and stress at proportional limit on bending of Comply were higher than those of control board. Also the modulus of elasticity of Comply showed much higher than that of control board. The nail resistance of Comply, composed of plywood as face and back was higher than that of veneer. The nail resistance of control board was higher than that of Comply at Sp.Gr 0.7 and 0.8 core boards. Internal bond of Comply, composed of 1mm and 2mm thick veneer as face and back was higher than that of 3mm thick veneer. The increasing effect of modulus of elasticity was shown by the increase of shelling ratio in Comply composed of veneer and plywood as face and back. The modulus of rupture was increased by the increment of shellmg ratio in Compiy, composed of plywood as face and back. The modulus of elasticity and modulus of. rupture of comply were higher than those of particleboard(control) in effect of shelling ratio. Therefore it was concluded that the mechanical property values of Comply were clearly greater than those of particleboard(control).

  • PDF

A Study on the Bond Strength Properties of Antiwashout Underwater Concrete (수중불분리콘크리트의 부착강도특성에 관한 연구)

  • 김기동;윤재범;이상명;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.153-159
    • /
    • 1999
  • The objective of this study was to investigate the bond strength properties of antiwashout underwater concrete. The fine aggregate(river sand, blended sand (river sand : sea sand = 1 : 1), condition of cast and cure(sea water, fresh water), and compressive strength of proportion(210kgf/$\textrm{cm}^2$ ~ 330kgf/$\textrm{cm}^2$) were chosen as the experimental parameters. The experimental results show that the underwater segregation resistance was increased, but flowability (slump flow) and air contents were decreased as the compressive strength of proportion increased. Bond strength of antiwashout underwater concrete was similar to plain concrete. From this study, rational analytic formula for the modulus of rupture and bond stress are to be from compressive strength of concrete.

  • PDF