• Title/Summary/Keyword: Bone Diseases

Search Result 826, Processing Time 0.032 seconds

Metabolic Bone Diseases and New Drug Developments

  • Natesan, Vijayakumar;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.309-319
    • /
    • 2022
  • Metabolic bone diseases are serious health issues worldwide, since several million individuals over the age of 50 are at risk of bone damage and should be worried about their bone health. One in every two women and one in every four men will break a bone during their lifetime due to a metabolic bone disease. Early detection, raising bone health awareness, and maintaining a balanced healthy diet may reduce the risk of skeletal fractures caused by metabolic bone diseases. This review compiles information on the most common metabolic bone diseases (osteoporosis, primary hyperparathyroidism, osteomalacia, and fluorosis disease) seen in the global population, including their symptoms, mechanisms, and causes, as well as discussing their prevention and the development of new drugs for treatment. A large amount of research literature suggests that balanced nutrition and balanced periodic supplementation of calcium, phosphate, and vitamin D can improve re-absorption and the regrowth of bones, and inhibit the formation of skeletal fractures, except in the case of hereditary bone diseases. Meanwhile, new and improved drug formulations, such as raloxifene, teriparatide, sclerostin, denosumab, and abaloparatide, have been successfully developed and administered as treatments for metabolic bone diseases, while others (romososumab and odanacatib) are in various stages of clinical trials.

Parthenolide inhibits osteoclast differentiation and bone resorbing activity by down-regulation of NFATc1 induction and c-Fos stability, during RANKL-mediated osteoclastogenesis

  • Kim, Ju-Young;Cheon, Yoon-Hee;Yoon, Kwon-Ha;Lee, Myeung Su;Oh, Jaemin
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.451-456
    • /
    • 2014
  • Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of $NF-{\kappa}B$ ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytotoxicity and the phosphorylation of p38, ERK, and $I{\kappa}B$, as well as $I{\kappa}B$ degradation by RANKL treatment. Parthenolide suppressed the expression of NFATc1, OSCAR, TRAP, DC-STAMP, and cathepsin K in RANKL-treated BMMs. Furthermore, parthenolide down-regulated the stability of c-Fos protein, but could not suppress the expression of c-Fos. Overexpression of NFATc1 and c-Fos in BMMs reversed the inhibitory effect of parthenolide on RANKL-mediated osteoclast differentiation. Parthenolide also inhibited the bone resorbing activity of mature osteoclasts. Parthenolide inhibits the differentiation and bone-resolving activity of osteoclast by RANKL, suggesting its potential therapeutic value for bone destructive disorders associated with osteoclast-mediated bone resorption.

Role of Bone Scan in Rheumatic Diseases (류마티스 질환에서 골스캔의 역할)

  • Choi, Yun-Young
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.3
    • /
    • pp.137-146
    • /
    • 2003
  • Rheumatic diseases can be categorized by pathology into several specific types of musculoskeletal problems, including synovitis (e.g. rheumatoid arthritis), enthesopathy (e.g. ankylosing spondylitis) and cartilage degeneration (e.g. osteoarthritis). Skeletal radiographs have contributed to the diagnosis of these articular diseases, and some disease entities need typical radiographic changes as a factor of the diagnostic criteria. However, they sometimes show normal radiographic findings in the early stage of disease, when there is demineralization of less than 30-50 %. Bone scans have also been used in arthritis, but not widely because the findings are nonspecific and it is thought that bone scans do not add significant information to routine radiography. Bone scans do however play a different role than simple radiography, and it is a complementary imaging method in the course of management of arthritis. The Image quality of bone scans can be improved by obtaining regional views and images under a pin-hole collimator, and through a variety of scintigraphic techniques including the three phase bone scan and bone SPECT. Therefore, bone scans could improve the diagnostic value, and answer multiple clinical questions, based on the pathophysiology of various forms of arthritis.

Effects of plant-derived natural products on inflammatory bone destructive disease

  • Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.130-143
    • /
    • 2019
  • Rheumatoid arthritis, osteoarthritis, and periodontal disease are bone destructive diseases mainly caused by inflammation. Various studies are being conducted to develop treatments for inflammatory bone destructive diseases. Many of these studies involve plant-derived natural compounds. In these studies, cell differentiation, signal transduction pathways, and bone resorption were measured at the cellular level. In disease-induced animal models, the amount of inflammatory mediators or matrix destructive enzymes and serum metabolic markers were measured. This study examined the effects of plant-derived natural compounds, such as flavonoids, on inflammatory bone destructive diseases. In addition, we structurally classified various substances used to maintain bone health and summarized the biological effects and related mechanisms of the components.

Nuclear Medicine Imaging Diagnosis in Infectious Bone Diseases (감염성 골질환의 핵의학 영상진단)

  • Choi, Yun-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.193-199
    • /
    • 2006
  • Infectious and inflammatory bone diseases include a wide range of disease process, depending on the patient's age, location of infection, various causative organisms, duration from symtom onset, accompanied fracture or prior surgery, prosthesis insertion, and underlying systemic disease such as diabetes, etc. Bone infection may induce massive destruction of bones and joints, results in functional reduction and disability. The key to successful management is early diagnosis and proper treatment. Various radionuclide imaging methods including three phase bone scan, Ga-67 scan, WBC scan, and combined imaging techniques such as bone/Ga-67 scan, WBC/bone marrow scan add complementary role to the radiologic imaging modalities including plain radiography, CT and MRI. F-18 FDG PET imaging also has recently been introduced in diagnosis of infected prosthesis and chronic active osteomyelitis. Selection of proper nuclear medicine imaging method will improve the diagnostic accuracy of infections and inflammatory bone diseases, based on understading of pathogenesis and radiologic imaging findings.

Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling

  • Wang, Yuli;Ma, Junchi;Du, Yifei;Miao, Jing;Chen, Ning
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.186-194
    • /
    • 2016
  • Epidemiological evidence suggests that bone is especially sensitive to oxidative stress, causing bone loss in the elderly. Previous studies indicated that human amnion-derived mesenchymal stem cells (HAMSCs), obtained from human amniotic membranes, exerted osteoprotective effects in vivo. However, the potential of HAMSCs as seed cells against oxidative stress-mediated dysfunction is unknown. In this study, we systemically investigated their antioxidative and osteogenic effects in vitro. Here, we demonstrated that HAMSCs significantly promoted the proliferation and osteoblastic differentiation of $H_2O_2$-induced human bone marrow mesenchymal stem cells (HBMSCs), and down-regulated the reactive oxygen species (ROS) level. Further, our results suggest that activation of the ERK1/2 MAPK signal transduction pathway is essential for both HAMSCs-mediated osteogenic and protective effects against oxidative stress-induced dysfunction in HBMSCs. U0126, a highly selective inhibitor of extracellular ERK1/2 MAPK signaling, significantly suppressed the antioxidative and osteogenic effects in HAMSCs. In conclusion, by modulating HBMSCs, HAMSCs show a strong potential in treating oxidative stress- mediated bone deficiency.

Interleukin-32 Gamma as a New Face in Inflammatory Bone Diseases

  • Lee, Eun-Jin;Choi, Bongkun;Hwang, Eui-Seung;Chang, Eun-Ju
    • Journal of Rheumatic Diseases
    • /
    • v.24 no.1
    • /
    • pp.14-20
    • /
    • 2017
  • Interleukin-32 (IL-32), a recently identified pro-inflammatory cytokine, is involved in the pathogenesis and progression of infections, cancer, chronic inflammation, and autoimmune disease. IL-32γ is the most active isoform in cell death and cell activation among nine distinct isoforms of IL-32. IL-32γ potentiates both osteogenic and osteoclastogenic capacities, and is critical in the coupling of bone resorption and bone formation for maintenance of bone homeostasis. IL-32γ is strongly associated with inflammatory bone disorders such as rheumatoid arthritis, ankylosing spondylitis, and osteoporosis. In this review, we summarize current research on the role of IL-32γ in inflammatory bone disorders, highlighting this cytokine as a novel target for prognostic marker and control of these diseases.

Inhibitory Effect on RANKL-Induced Osteoclast Differentiation by Water Extract of Zizyphus Jujuba Mill (대추 물 추출물이 RANKL에 의해 유도되는 파골세포 분화에 미치는 영향)

  • Yoon, Kang Hugh;Baek, Jong Min;Kim, Ju Young;Kwak, Seong Cheoul;Cheon, Yoon Hee;Jeon, Byung Hoon;Lee, Chang Hoon;Choi, Min Kyu;Oh, Jaemin;Lee, Myeung Su;Kim, Jeong Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.29-34
    • /
    • 2014
  • Bone homeostasis is maintained by balance between bone resorbing-osteoclasts and bone forming-osteoblasts. Excessive osteoclastic bone resorption plays a critical role in bone destruction in pathological bone diseases such as osteoporosis, rheumatoid arthritis, and periodontal disease. Many compounds derived from natural products have pharmacological applications and have therapeutic value for treating or preventing several bone diseases characterized by excessive bone resorption. To discover new compounds that can act as anti-resorptive agents, we screened for natural compounds that regulate osteclast differentiation, and found that water extract of Ziziphus Jujuba Mill (WEZJ) has inhibitory effects on osteoclast differentiation. In this study, WEZJ clearly inhibits the osteoclast differentiation in the presence of receptor activator of nuclear factor kB (RANKL), macrophage colony-stimulating factor (M-CSF) without cytoxicity by blocking activation of nuclear factor of activated T cells (NFAT)c1, and c-Fos. In signaling pathway, the phosphorylation of Akt, p38, c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinases (ERK) and the expression of osteoclast-associated receptor (OSCAR), tartrate-resistant acid phosphates (TRAP), Integrin av, Integrin b3, Cathepsin K are suppressed, too. These result suggest that WEZJ may have therapeutic value for treating or preventing several bone diseases characterized by excessive bone destruction.

Microphthalmia-associated Transcription Factor Polymorphis and Association with Bone Mineral Density of the Proximal Femur in Postmenopausal Women

  • Koh, Jung-Min;Kim, Ghi Su;Oh, Bermseok;Lee, Jong Yong;Park, Byung Lae;Shin, Hyoung Doo;Hong, Jung Min;Kim, Tae-Ho;Kim, Shin-Yoon;Park, Eui Kyun
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.246-251
    • /
    • 2007
  • Osteoporosis is a common metabolic bone disease characterized by low bone mineral density (BMD) with an increased risk of fracture. Low bone mass results from an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts. Microphthalmia-associated transcription factor (MITF) plays a critical role in osteoclast development and thus is an important candidate gene affecting bone turnover and BMD. In order to investigate the genetic effects of MITF variations on osteoporosis, we directly sequenced the MITF gene in 24 Koreans, and identified fifteen sequence variants. Two polymorphisms (+227719C > T and +228953A > G) were selected based on their allele frequencies, and then genotyped in a larger number of postmenopausal women (n = 560). Areal BMD ($g/cm^2$) of the anterior-posterior lumbar spine and the non-dominant proximal femur was measured by dual-energy X-ray absorptiometry. We found that the MITF + 227719C > T polymorphism was significantly associated with low BMD of the trochanter (p = 0.005-0.006) and total femur (p = 0.02-0.03) (codominant and dominant models), while there was no association with BMD of the lumbar spine. The MITF+228953A > G polymorphism was also associated with low BMD of the femoral shaft (p = 0.05) in the recessive model. Haplotype analysis showed that haplotype 3 of the MITF gene (MITF-ht3) was associated with low BMD of the trochanter (p = 0.03-0.05) and total femur (p = 0.05) (dominant and codominant models). Our results suggest that MITF variants may play a role in the decreased BMD of the proximal femur in postmenopausal women.

Protocadherin-7 contributes to maintenance of bone homeostasis through regulation of osteoclast multinucleation

  • Kim, Hyunsoo;Takegahara, Noriko;Walsh, Matthew C.;Ueda, Jun;Fujihara, Yoshitaka;Ikawa, Masahito;Choi, Yongwon
    • BMB Reports
    • /
    • v.53 no.9
    • /
    • pp.472-477
    • /
    • 2020
  • Osteoclasts are hematopoietic-derived cells that resorb bone. They are required to maintain proper bone homeostasis and skeletal strength. Although osteoclast differentiation depends on receptor activator of NF-κB ligand (RANKL) stimulation, additional molecules further contribute to osteoclast maturation. Here, we demonstrate that protocadherin-7 (Pcdh7) regulates formation of multinucleated osteoclasts and contributes to maintenance of bone homeostasis. We found that Pcdh7 expression is induced by RANKL stimulation, and that RNAi-mediated knockdown of Pcdh7 resulted in impaired formation of osteoclasts. We generated Pcdh7-deficient mice and found increased bone mass due to decreased bone resorption but without any defect in bone formation. Using an in vitro culture system, it was revealed that formation of multinucleated osteoclasts is impaired in Pcdh7-deficient cultures, while no apparent defects were observed in differentiation and function of Pcdh7-deficient osteoblasts. Taken together, these results reveal an osteoclast cell-intrinsic role for Pcdh7 in maintaining bone homeostasis.