• Title/Summary/Keyword: Boost pressure ratio

Search Result 19, Processing Time 0.026 seconds

Analysis of heat conduction of cylinder block of turbocharged gasoline engine by boundary element method (경계요소법에 의한 터보과급 가솔린기관 실린더블럭의 열전도 해석)

  • 김은태;최영돈;홍진관
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.41-54
    • /
    • 1989
  • In this study, steady state heat conduction problems of the cylinder block of turbocharged gasoline engine were solved by the boundary element method. Surface of the cylinder block was divided by the triangular cells with constant potential. Temperature distribution, effective heat transfer coefficient of the cylinder block were investigated with variation of equivalence ratio, engine speed and boost pressure. The results show that maximum temperature of cylinder block increase rapidly with increasing engine speed and boost pressure. The monolithic structure of cylinder block results in sever inhomogeneity of inner wall temperature at the high engine speed and boost pressure.

  • PDF

An Investigation on Operating Characteristics of the Closed Cycle System Using High Pressure Diesel Engine (고압 디젤엔진을 이용한 폐회로 시스템의 운전특성에 관한 고찰)

  • 김인교;박신배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.65-72
    • /
    • 2002
  • The closed cycle diesel system is operated in closed circuit system where there is non air breathing with working fluid consists of combination of oxygen, argon and recycled exhaust gas far obtaining underwater or underground power sources. Experimental apparatus using the MTU8V183SE92 high pressurized engine adapted for closed cycle running, capable of operating at the system pressure of maximum 5 bar is constructed with ACAP as data acquisition system in order to operate equally in the open cycle in surface or the closed cycle in submerged conditions. The general features and the characteristics of combustion of HP(high pressure) diesel engine, specially designed and manufactured only for CCDE, are investigated. The test results of performance of HP diesel engine in closed cycle system are presented with respect to power and boost pressure and compared with those of low pressure diesel engine. The oxygen concentration and specific heat ratio are investigated with its deviation

A Study About the Effect of EGR Ratio on DME HCCI Combustion Process (EGR 율이 DME HCCI 엔진연소과정에 미치는 영향에 관한 연구)

  • Lim, Ocktaeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.879-886
    • /
    • 2013
  • This study aims to provide helpful suggestions for understanding the effect of high EGR on DME HCCI combustion. This study determined which between oxygen partial pressure and oxygen concentration was the main factor affecting the LTHR heating ratio. Furthermore, EGR and the supercharging effect were investigated. To define the parameters for the EGR ratio and supercharging pressure, a numerical analysis of the chemical reaction was conducted under the following conditions: (1) variation of EGR ratio, oxygen concentration, and oxygen content; (2) variation of oxygen partial pressure while the oxygen concentration was almost constant; and (3) variation of oxygen concentration while oxygen partial pressure was constant with EGR and supercharging. The results show that an increase in EGR reduces the combustion duration. On the other hand, an increase in boost pressure increases the combustion duration. Finally, the EGR and boost pressure affect the amount of increase in LTHR.

Appraisement of Design Parameters through Fluid Dynamic Analysis in Thermal Vapor Compressor (열 증기 압축기 내의 유동해석을 통한 설계 인자들의 영향 분석)

  • Park I. S.;Kim H. W.;Kim Y. G.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.155-158
    • /
    • 2002
  • In general, TVC(Thermal Vapor Compressor) is used to boost/compress a low pressure vapor to a higher pressure for further utilization. The one-dimensional method is simple and reasonably accurate, but cannot realize the detail as like the back flow and recirculation in the mixing chamber, viscous shear effect, and etc. In this study, the axisymmetric How simulations have been performed to reveal the detailed flow characteristics for the various ejector shapes. The Navier-Stokes and energy equations are solved together with the continuity equation In the compressible flow fields. The standard $k-{\epsilon}$ model is selected for the turbulence modeling. The commercial computational fluid dynamic code FLUENT software is used for the simulation. The results contain the entrainment ratio under the various motive, suction and discharge pressure conditions. The numerical results are compared with the experimental data, and the comparison shows the good agreement. The three different flow regimes (double chocking, single chocking and back flow) have been clearly distinguished according to each boundary pressure values. Also the effects of the various shape variables (nozzle position, nozzle outlet diameter, mixing tube diameter, mixing tube converging angle, and etc.) are quantitatively discussed.

  • PDF

A Study on the Response Performances under Transient Operating Conditions in a Turlblocharged Diesel Engine (터보과급 디젤기관의 과도운전시 응답성능에 관한 연구)

  • 최낙정;이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1575-1582
    • /
    • 1992
  • This study describes the response performances of actual engine speed, turbocharger speed, air mass flow rate through engine, boost pressure ratio, exhaust temperature and combustion efficiency for a six-cylinder four-stroke turbocharged diesel engine during the change in operating conditions by using the computer simulation with test bed. In order to obtain the transient conditions, a suddenly large load was applied to the simulation engine with the several kinds of inertia moment in turbocharger and engine, and engine set speed. From the results of this study, the following conclusions were summarized The inferior response performances was mainly caused by turbocharger lag, and air mass flow rate and boost pressure ratio were closely related to the turbocharger speed. A reduced moment of turbocharger inertia resulted in less transient speed drop and much faster recovery to the steady state of the engine. The increase of moment of engine inertia reduced cyclic variation of engine speed. When a large load was applied to the engine at high speed, the engine could be fastly recovered. However, when the same load was applied to the engine at low speed, the engine was stalled.

A Study on the Performance Characteristics of Turbocharged Engine for the Stable Control (터보차저 엔진의 안정적 제어를 위한 성능 특성에 관한 연구)

  • Chun, Dong-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.93-101
    • /
    • 2010
  • In this study, the performance characteristics of turbocharged engine is analyzed. The methods of engine performance improvements are suggested not only for full load characteristics of the engine but also for partial load characteristics of the engine, which is more frequently used in actual driving conditions. The compression ratio of the compressor is increased rapidly in a straight line pattern until 1260 engine rpm, and after that it is increased slowly to 2.5 ratio. Also the brake mean effective pressure increased until 1260 engine rpm and decreased rapidly after 1600 engine rpm. The higher the pressure ratio, the better the fuel consumption, air excess ratio and brake mean effective pressure. But those are higher in the rated revolution range than in the mid-low revolution range. The turbocharger is operated in a stable condition from 1260 rpm and its efficiency is low in the low speed range for the reason of its characteristics. The results of this study can be applied in the fundamental control methods of turbocharged engine for stable load and speed.

Comparison of Combustion Characteristics On the Basis of the Dilution Ratio in Diesel Engines with LPL EGR (저압 EGR을 적용한 디젤엔진의 희석비에 따른 연소 특성 비교)

  • Lim, Gi-Hun;Park, Jun-Hyuk;Choi, Young;Lee, Sun-Youp;Kim, Yong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.525-531
    • /
    • 2011
  • Exhaust gas recirculation (EGR) is more effective than selective catalytic reduction (SCR) or lean $NO_x$ trap (LNT) for the reduction of $NO_x$ emissions in diesel engines. A large amount of EGR gas is necessary to satisfy the stringent regulations on $NO_x$ emissions. Low pressure loop (LPL) EGR is almost independent of the variable geometry turbocharger (VGT) at a specific boost pressure, so LPL EGR is better than conventional high pressure loop (HPL) EGR in terms of EGR supply. We compare the influence of HPL EGR and LPL EGR on the combustion characteristics at a constant boost pressure in a diesel engine. The dilution ratio was employed as an independent parameter to analyze the effect of the dilution of the intake charge for each EGR loop. At the same level of $NO_x$ emissions, the fuel consumption and smoke opacity were slightly lower for LPL EGR than for HPL EGR.

Numerical Analysis on the Mode Transition of Integrated Rocket-Ramjet and Unstable Combusting Flow-Field (일체형 로켓-램제트 모드 천이 및 불안정 연소 유동장 해석)

  • Ko Hyun;Park Byung-Hoon;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.334-342
    • /
    • 2005
  • A numerical analysis is performed using two dimensional axisymmetric RANS (Reynolds Averaged Navier-Stokes) equations system on the transition sequence of the Integrated Rocket Ramjet and the unsteady reacting flow-field in a ramjet combustor during unstable combustion. The mode transition of an axisymmetric ramjet is numerically simulated starting from the initial condition of the boost end phase of the entire ramjet. The unsteady reacting flow-field within combustor is computed for varying injection area. In calculation results of the transition, the terminal normal shock is occurred at the downstream of diffuser throat section and no notable combustor pressure oscillation is observed after certain time of the inlet port cover open. For the case of a small injection area at the same equivalence ratio, periodic pressure oscillation in the combustor leads to the terminal shock expulsion from the inlet and hence the buzz instability occurred.

  • PDF

A Study on Performance and Exhaust GAS Characteristics of the Diesel Engine with Turbocharger and Intercooler (터보 과급기와 중간 냉각기를 장착한 디젤기관의 성능 및 배출가스에 관한 연구)

  • 류규현;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.86-93
    • /
    • 1999
  • Turbocharger has been used to increase the performance of diesel engine, especially ship engine , for years. Recently, the turbocharger is being adopted not only for an agricultural engine but also for an automobile engine. To improve the performance of diesel engine , the problem of the reduction of A/F ratio in high speed should be solved. Turbocharger is well known for its cost effectiveness, reliability and duration . In this study, an experiment was conducted to verify simulation program . The results for natural aspiration engine and turbocharged engine were compared. In order to estimate the characteristics of exhaust gas, D-13 mode was selected. Power, torque and BSFC of turbocharged engine were increased than those of natural aspiration engine by about 48%, 46% and 5%, respectively . The components in exhaust gas except NOx from turbocharger engine were less than the amount set up for 2000-year regulation.

  • PDF

Heat Conduction Analysis of the Cylinder Head in Turbocharged Gasoline Engine by Boundary Element Method (경계요소법에 의한 터보과급 가솔린기관 실린더헤드에 대한 열전도 해석)

  • 최영돈;홍진관
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.739-752
    • /
    • 1989
  • The temperature distribution and heat flux of the inner wall of the cylinder of turbocharged gasoline engine were calculated by the 3-dimensional heat conduction analysis employing boundary element method. Overall mean effective heat transfer coefficient and thermal resistance ratio and equivalent thickness of the cylinder wall were calculated. the numerical results were discussed with respect to the engine speed, equivalence ratio, spark and boost pressure.