• Title/Summary/Keyword: Bow flare

Search Result 27, Processing Time 0.022 seconds

Damage Analysis of Bow-Flare Structure (선수 플레어 구조손상 해석)

  • 김용직;신기석;신찬호;강점문;김만수;김성찬;오수관;임채환;김대헌
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.37-44
    • /
    • 2003
  • In rough seas, bow-flare regions of the sea-going ships are subject to high impact pressures due to the bow-flare slamming and panting. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, bow-flare damage analysis is performed for 17 ships (total number of damage/non-damage data is 782). Based on this analysis, a new design standard and method for bow-flare structure (shell plate, frame and web frame) is proposed. 80.4% of the present damage/non-damage data were well-explained by this new design standard.

Prediction of Bow Flare Impact Pressure and Its Application to Ship Structure Design - Container Ship and PCC - (선수 플레어 충격압력 추정과 구조설계에의 응용 - 콘테이너선과 자동차 운반선 -)

  • 김용직;신기석;신찬호;강점문;김만수;김성찬;오수관;임채환;김대헌
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.29-36
    • /
    • 2003
  • In rough seas, bow-flare regions of the fine ships (container ship and PCC) are subject to high impact pressures due to the bow-flare slamming. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, a new prediction method of the bow-flare impact pressure (in terms of equivalent static pressure) acting on the fine ships' bow is presented. This method is based on the 11 fine ships' damage analysis and the mechanisms of water entry impact and breaking wave impact. Calculation results of the bow-flare impact pressure and the shell plate thickness are shown and discussed. Through the example calculations, it was found that the present method is useful for the structure design of the fine ships' bow.

Prediction of Bow Flare Impact Pressure and Its Application to Ship Structure Design - Tanker and Bulk Carrier - (선수 플레어 충격압력 추정과 구조설계에의 응용 - 탱커와 산적화물선 -)

  • 김용직;신기석;신찬호;강점문;김만수;김성찬;오수관;임채환;김대헌
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.22-28
    • /
    • 2003
  • In rough seas, bow-flare regions of the full ships (tanker and bulk carrier) are subiect to high impact pressures due to the on-coming breaking waves. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, a new prediction method of the bow-flare impact pressure (in terms of equivalent static pressure) acting on the full ships' bow is presented. This method is based on the 6 full ships' damage analysis and the breaking wave impact mechanism. Calculation results of the bow-flare impact pressure and the shell plate thickness are shown and discussed. Through the example calculations, it was found that the present method is useful for the structure design of the full ships' bow.

An Experimental Study on the Effects of Bow Flare Angle about Green Water in Regular Waves (규칙파 중 갑판침입수에 미치는 선수 플레어 각도의 영향에 관한 실험적 연구)

  • Ha, Yoon-Jin;Lee, Young-Gill;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • It is very important to investigate and understand the motion of a FPSO on waves because green water phenomenon occurs owing to the relative motions between incident waves and a ship on them. In this research, both experimental and some numerical approaches have been performed in head sea conditions with regular waves. As an object model of this research, a FPSO model is set free to heave and pitch during the experiments. Also, the motions of the FPSO model which are the results of the experiments are used for the corresponding numerical computations. The purpose of this study is to clarify the effect of bow flare on green water load. In this research, it is found that the amount of green water entered from the side of bow is decreased by the increase of bow flare angle. Moreover, the relation between the green water on the bow upper deck and the impact load on the vertical wall located at turrethead is investigated. The results of this research could be used as one of the fundamental data to design bow flares. Also, an optimized bow flare angle is proposed in this study.

A Comparative Study on the Prediction of Bow Flare Slamming load using CFD and Prescript Formula for the Container Ship

  • Seo, Dae-Won;Jeon, Gi-Young;Song, Kang-Hyun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.204-216
    • /
    • 2018
  • A ship repeatedly face free surface under rough sea conditions owing to relative motion with wave encounter. The impact pressure is transferred to the hull structure and causes structural damage. In this study, the bow flare slamming load of a container ship is estimated using computations fluid dynamics (CFD) and prescript formula according to various classifications. It is found that the bow flare slamming load calculated by the formulas of the common structural rule and ABS tends to be similar to the CFD results.

A Study on Measurement of Flare Slamming of Large Container Vessel (II) - Characteristic Analysis of Measured Slamming Pressure - (대형 컨테이너선의 플레어 슬래밍 계측 연구 (II) - 슬래밍 압력 특성 분석 -)

  • Lee, Tak-Kee;Rim, Chae-Whan;Kim, Young-Nam;Heo, Joo-Ho;Kim, Byung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.279-284
    • /
    • 2007
  • As a container vessel becomes larger, the bow flare becomes larger. The large bow flare structures are often subjected to dynamic pressure loads due to bow flare slamming occurring in rough seas. The aim of this paper is to investigate the characteristics of bow flare slamming pressure measured in a real voyage through the North Pacific Ocean. The characteristics of impact pressure load caused by slamming is addressed in terms of the pressure pulse-time history which involves rising time, peak pressure, decaying time and type of pressure decay. The values were presented using non-dimensional parameters.

Dynamic Response of Container Ship Subjected to Bow flare Slamming Loads

  • Choi, Tae-Soon;Islam, MD Shafiqul;Seo, Dae-Won;Kim, Joon-Gyu;Song, Kang-hyun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.195-203
    • /
    • 2018
  • The wave impact on ships could cause local damage to the ship's hull, which has been a concerning issue during the ship design process. In recent years, local structural damages of ships caused by slamming loads have been reported by accident; therefore, it is necessary to study the local slamming pressure loads and structural response assessment. In the present study, slamming loads around the ship's bow region in the presence of regular wave have been simulated by RANS equations discretized with a cell-centered finite volume method (FVM) in conjunction with the $k-{\Box}$ turbulence model. The dynamic structural response has been calculated using an explicit FE method. By adding the slamming pressure load of each time step to the finite element model, establishing the reasonable boundary conditions, and considering the material strain-rate effects, the dynamic response prediction of the bow flare structure has been achieved. The results and insights of this study will be helpful to design a container ship that is resistant enough to withstand bow flare slamming loads.

Development of Structural Analysis System of Bow Flare Structure(3) - Dynamic Structural Analysis - (선수 구조부 구조해석 시스템 개발(3) - 동적 구조해석 -)

  • S.G. Lee;C.K. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.99-110
    • /
    • 2000
  • The damages due to wave impact loads are largely affected by impact pressure impulse and impact load area. The objective of this study is, as the third step, to perform dynamic structural analysis of bow flare structure of 300,000 DWT VLCC using LS/DYNA3D code, and to verify its dynamic structural behaviors. The impact load areas of stiffener space $1.5s{\times}1.5s$ and $2.5s{\times}2.5s$ are applied to bow flare structure part with relatively flexible stiffeners, and with stiff members such as stringers, webs etc., respectively, under the wave impact load with peak height 6.5MPa, tail 1.0MPa, and duration time 5.0msec. Through the dynamic structural analysis in this study, it might be thought that the structural strength of bow flare structure is generally sufficient for these wave impact load and areas, except that large damages were found at bow flare structure area with flexible wide span stiffeners.

  • PDF

Design of Bow Shape to Decrease Green Water Impact Loading in Regular Waves (규칙파 중 갑판침입수 충격하중 감소를 위한 선수형상 설계)

  • Ha, Yoon-Jin;Lee, Young-Gill;Jeong, Kwang-Leol
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.15-22
    • /
    • 2012
  • In this research, the relationship between the bow shape and green water phenomenon on the bow deck of an FPSO was studied using an experimental method. A 140,000 DWT FPSO was used as the objective hull form in the present research. The incident waves were regular types. The heights were 1.0 and 1.5 times the freeboard, and the length was equal in size to LBP. The wave heights and pressures on the deck were measured in experiments. Model tests were performed to determine the effects of bow flare angles, bow shapes, and a forecastle deck. The free heave and pitch conditions were applied to the models in these experiments. From the results of the model tests, an optimized bow shape was designed, which was found to decrease the green water impact loading. The results of this research could be used as fundamental data in the design of a bow shape.

Numerical Study on Prediction of Flare Slamming Load on Container Ship under Head Sea and Oblique Sea Conditions (선수파 및 사파조건에서 컨테이너선의 선수 플레어 슬래밍 하중 추정에 관한 수치적 연구)

  • Seo, Dae-Won;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.489-497
    • /
    • 2019
  • A ship operating under rough sea conditions is exposed to a slamming load due owing to its motion relative to encountered waves. In the process of reentering the water, the ship's structure is temporarily subjected to an impact pressure. In particular, bow flare slamming often occurs in large container ships with a large flare angle, and can cause structural damage. Numerical simulations were performed in this study, and the results were compared with reliable experimental results. The simulation results were also used to estimate the bow flare slamming pressures on a container ship under head sea and oblique sea conditions. It was found that a maximum impact pressure of 475 kPa was generated near the 0.975 station of the container ship under a head sea condition.