• Title/Summary/Keyword: Bowen line

Search Result 2, Processing Time 0.02 seconds

N III Bowen Lines and Fluorescence Mechanism in the Symbiotic Star AG Peg

  • Hyung, Siek;Lee, Seong-Jae;Lee, Kang Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.7-18
    • /
    • 2018
  • We have investigated the intensities and full width at half maximum (FWHM) of the high dispersion spectroscopic N III emission lines of AG Peg, observed with the Hamilton Echelle Spectrograph (HES) in three different epochs at Mt. Hamilton's Lick Observatory. The earlier theoretical Bowen line study assumed the continuum fluorescence effect, presenting a large discrepancy with the present data. Hence, we analyzed the observed N III lines assuming line fluorescence as the only suitable source: (1) The O III and N III resonance line profiles near ${\lambda}$ 374 were decomposed, using the Gaussian function, and the contributions from various O III line components were determined. (2) Based on the theoretical resonant N III intensities, the expected N III Bowen intensities were obtained to fit the observed values. Our study shows that the incoming line photon number ratio must be considered to balance at each N III Bowen line level in the ultraviolet radiation according to the observed lines in the optical zone. We also found that the average FWHM of the N III Bowen lines was about $5km{\cdot}s^{-1}$ greater than that of the O III Bowen lines, perhaps due to the inherently different kinematic characteristics of their emission zones.

Spectroscopic Observation of AG Peg and Efficiency Changes of Bowen Fluorescence Mechanism (AG Peg의 분광 관측과 Bowen 형광 기작의 효율 변화)

  • Hyung, Siek;Lee, Seong-Jae;Lee, Kang Hwan
    • Journal of the Korean earth science society
    • /
    • v.38 no.6
    • /
    • pp.405-420
    • /
    • 2017
  • We investigated the H I, He II and O III emission lines of the symbiotic star AG Peg, using the spectroscopic data secured at different phases in three periods at the Lick Observatory. We measured FWHM and the intensity of six O III Bowen lines and studied the efficiency of fluorescence mechanism. The mean FWHM of O III normal and Bowen lines observed during three time periods did not make much difference, while Bowen line intensities are about 4.0 times higher than the normal lines. Comparing the predicted and the observed ratios, we found that the observed intensities are higher than predicted intensities, except for O III ${\lambda}$ 3759.87. The O III ${\lambda}$ 3791.26 and 3754.67 intensity ratios observed only in 2001 are in good agreement with the predictions by Saraph and Seaton (1980). We obtained the Bowen efficiency parameter (R)=0.47 for 2002, but we could not find R for the other two periods of time. Because of this, based on the 2002 efficiency result, we calculated the intensity ratio of O III normal and Bowen lines relative to He II ${\lambda}$ 4685.68 and derive the efficiency variation with time period. The result showed that the efficiency is the highest in 1998 and the lowest in 2001. We conclude that the efficiencies with phase are caused by the electron temperature changes in the ionized gas. The efficiencies of AG Peg are likely to increase along with electron temperature. Our analysis results may be useful in understanding the physical conditions of the ionized shell in symbiotic star and the intensity ratio and efficiency variation.