• Title/Summary/Keyword: Bradyrhizobium japonicum

Search Result 55, Processing Time 0.021 seconds

Cloning and Sequence Analysis of the nodD1 Gene from Bradyrhizobium sp.(Cassia) CN9135 (Bradyrhizobium sp.(Cassia) CN9135의 nodD1 유전자의 크로닝과 염기서열 분석)

  • 최순용;고상균
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.267-272
    • /
    • 2000
  • A 1.7-kb fragment containing the nodD1 genes of Bradyrhizobium sp. (Cassia) CN9135 was amplified by PCR with primers based on B. japonicum USDA110. This fragment was cloned and sequenced. Analysis of the sequence showed open reading frames highly homologous to nodD1 from other bradyrhizobial sources. The sequence showed higher homology to nodD1 gene of B. elkanii than to those from b. japonicum. Our results suggest that Bradyrhizobium sp. (Cassia) CN9135 may be more closely related to B. elkanii than to B. japonicum.

  • PDF

Identification of Rhizobium fredii and Bradyrhizobium japonicum by Polyacrylamide Gel Electrophoresis (전기영동법(電氣泳動法)에 의(依)한 대두(大豆) 근류균(根瘤菌) Rhizobium fredii와 Bradyrhizobium japonicum의 분류(分類) 및 동정(同定))

  • Yun, Han-Dae;Cho, Moo-Je;Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.30 no.2
    • /
    • pp.163-168
    • /
    • 1987
  • A method, based upon the separation of cellular proteins by one-and two-dimensional electrophoresis was used for distinguishing butween Bradyrhizobium japonicum strains and Rhizobium fredii strains. Significant differences in protein pattern of one-dimensional SDS-PAGE vs-ere observed between Rhizobium fredii strains and Bradyrhizobium japonicum strains. The differences in six distinct main lands were observed among total 52 kinds of protein bands. Furthermore, the distribution of proteins in two groups by two-dimensional polyacrylamide gel electrophoresis was very different. The majority of visible proteins of Rhizobium fredii were acidic, whereas those of Bradyrhizobium japonicum were basic. In addition, amino acid composition was analyzed to detect the differences between two groups. No significant differences in amino acid composition were observed between Bradyrhizobium japonicum strains and Rhizobium fredii strains. The results indicate that one-and two-dimensional polyacrylamide gel electrophoresis were useful for identifying rhizobia isolates. One-dimensional SDS-PAGE of rhizobia proteins provided a rapid method for screening a large number of isolates, whereas two-dimensional electrophoresis was more of resolution and easiness for analyzing protein spots.

  • PDF

Studies on the riboxomal RNA genes of rhizobium meliloti and bradyrhizobium japonicum (Rhizobium meliloti와 bradyrhizobium japonicum의 ribosomal RNA 유전자에 관한 연구)

  • 강홍규;김달웅;하지홍
    • Korean Journal of Microbiology
    • /
    • v.26 no.4
    • /
    • pp.312-317
    • /
    • 1988
  • The genes for ribosomal RNA in Rhizobium meliloti and Bradyrhizobium japonicum were analyzed by southern hybridization of BamHI, EcoRI, HindIII digested chromosomal DNA with purified 5' $^{32}P$-labeled 16S and 23S rRNA. The big differences in the hybridization pattern of both rhizobia were found. The comparative results were discussed in relation to the copy number and conservativity of restriction sites in the rRNA genes of both rhizobia.

  • PDF

The Effect of Cold-adaptation on Stress Responses and Identification of a Cold Shock Gene, capA in Bradyrhizobium japonicum (Bradyrhizobium japonicum의 저온 전처리에 의한 환경스트레스 내성 증진에 대한 연구)

  • 유지철;노재상;오은택;소재성
    • Korean Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.45-49
    • /
    • 2002
  • Bradyrhizobium japonicum is a soil bacterium with a unique ability to infect the roots of leguminous plants and establish a nitrogen-fixing symbiosis, which has been used as a microbial manure. In this study, we examined the stress response after pretreatment of cells with cold temperature. When pre-treated with cold temperature ($4^{\circ}C$) for 16 hr, B. japonicum increased the viability in subsequent stress-conditions such as alcohol, $H_2O_2$, heat, and dehydration. For cold adpatation, cultured B. japonicum was exposed to $4^{\circ}C$. Upon subsequent exposure to various conditions, the number of adapted cells pretreated by cold adaptation was 10-1000 fold higher than that of non-adaptated ones. It appeared de novo protein synthesis occurred during adaptation, because a protein synthesis inhibitor, chloramphenicol abolished the increased stress tolerance. By using a degenerate PCR primer set, a csp homolog was amplified from B. japonicum genome and sequenced. The deduced partial amino acid sequence of the putative Csp (Cold shock protein) shares a significant similarity with known Csp proteins of other bacteria.

Characteristics of Bradyrhizobium japonicum SNU001, aSsymbiotic Strain of Glycion max (콩(Glycine max)의 공생균주 Bradyrhizobium japonicum SNU001의 특성)

  • 고세리;박용근;안정선
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.143-147
    • /
    • 1991
  • The root nodules and Glycine max were classified as determinate nodule based on their morphological characteristics, and isolated endosymbiont as a Bradyrhizobium based on its growth rate and single subpolar flagellum. The isolate was similar to B. japonicum USDA110 in utilization of carbon source, growth at 38.deg.C and 2% NaCl, production of $H_{2}$S and especially in the restriction endonuclease digestion pattern of symbiotic genes, allowing them to be placed in sTI group together. The former, however, grew better than the later in broad pH range from 5.0 to 9.5. Infectivity and effectivity of the isolate were confirmed by inoculation of soybean seedlings with the isolates. Characteristics of the reisolated endosymbiont from induced root nodules were identical to those of the first isolate. From these results, it was confirmed that Bradyrhizobium strain isolated from the root nodules of Glycine max was a real symbiont, and was named B. japonicum SNU001.

  • PDF

Transposon Tn5 Mutagenesis of Bradyrhizobium japonicum: A Histidine Auxotrophic Mutant of B. japonicum Shows Defective Nodulation Phenotype on Soybean

  • So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.110-113
    • /
    • 1995
  • Transposon Tn5 was used to induce random insertional mutations in Bradyrhizobium japonicum, a soybean endosymbiont. By genomic Southern blot analysis, transposition events were found to have occurred randomly throughout the B. japonicum genome. After screening 3, 626 mutants by auxotrophy test, a histidine auxotroph was isolated. Upon plant infection test, the His mutant showed a 3~4 day delay in nodule formation.

  • PDF

Effect of Bradyrhizobium japonicum on Chlorophyll Content, Nodulation, and Plant Growth in Soybean

  • Poudyal Roshan Sharma;Prasad B. N.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.265-267
    • /
    • 2005
  • Study on effectiveness of Bradyrhizobium japonicum on soybean [Glycine max (L.) Merr.], local cultivar 'Sathiya' were carried out in the garden soil of Trib-huvan University. Different parameters like nodulation, chlorophyll content in fresh leaves and growth of plant in inoculated and uninoculated plant was studied. Pot experiment was conducted in the green house to evaluate the effectiveness of B. japonicum on soybean. It was observed that B. japonicum inoculation increased the number of nodules, shoot length of plant and total chlorophyll content in fresh leaves of soybean plant. However, root length was decreased in all inoculated plants.

Increased Cell Surface Hydrophobicity of A Lipopolysaccharide-defective Mutant of Bradyrhizobium japonicum

  • JAE-SEONG S0;PAE, KYEONC-HOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.241-243
    • /
    • 1995
  • A lipopolysaccharide (LPS) defective mutant of Bradyrhizobium japonicum was characterized in terms of its cell surface hydrophobicity (CSH). By monitoring the kinetics of adhesion to hexadecane the LPS mutant was found to be far more hydrophobic than the wild type strain; the removal coefficients were 4.65 $min^{-1}$ for the mutant, as compared with only 2.40 $min^{-1}$ for the wild type. The possible role of cell surface hydrophobicity of B. japonicum in nodulation process is discussed.

  • PDF

Relatedness of Naturalized Bradyrhizobium japonicum Populations with Soil Physico-Chemical Characteristics as Affected by Paddy-Upland Rotation (답전윤환에 따른 토착 Bradyrhizobium japonicum의 서식밀도와 토양 이화학성과의 관계)

  • Park, Chang-Young;Youn, Moon-Tae;Choi, Sang-Uk;Ha, Ho-Sung;Kang, Ui-Gum
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.438-441
    • /
    • 1997
  • The relatedness of naturalized Bradyhizobium japonitum populations with soil physico-chemical characteristics as affected by paddy rice-upland soybean rotation cropping with conventional and none fertilization in Chilgog clay loam soils were determined as follows. The populations of B. japonicum in soils were increased from about $10^1$ in continuous paddy upto $10^1cells/g.soil$ only in one-year rotation of upland use with soybean cropping. Compared to the densities in plots of conventional fertilization, those in none fertilization were high ranging from 1.9 to 10 fold in 2-year upland use rotation and both in 3-year upland use rotation and 4-year upland use, respectively. The populations were positively correlated with soil organic matter $contents(r=0.83^*),\;Ca/K(r=0.74^*),\;and(Ca+Mg)/K(r=0.72^*)$ and were negatively correlated with soil $hardness(r=-0.73^*)$. And the soil populations increased by paddy-upland rotation resulted in superior symbiotic potentials to those in continuous paddy use in terms of nodule mass, nitrogenase activity, and soy-bean shoot dry weight.

  • PDF

Introduction of Ti Plasmid into Bradyrhizobium japonicum by Spheroplast Transformation (형질전환(形質轉換)에 의한 Ti Plasmid의 Bradyrhizobium japonicum에의 도입(導入))

  • Yun, Han-Dae;Cho, Moo-Je;Park, Chan-Young;Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.30 no.4
    • /
    • pp.293-299
    • /
    • 1987
  • Bradyrhizobium japonicum spheroplasts were prepared by culturing cells in the presence of glycine, follwed by treatment with lysozyme. The cells were examined by electron microscopy during the formation of spheroplast. Then Ti plasmid from Agrobacterium tumefaciens 15955 was introduced into Bradyrhizobium japonicum by glycine-lysozyme induced spheroplast transformation. After cell wall regeneration, transformants were selected by the ability of utilization of octopine. Transformation were received at a frequency of $1{\times}10^{-7}$. The transformants obtained from spheroplast transformation harbored the introduced Ti plasmid, which was identified by agarose gel electrophoresis. Furthermore, the differences in their gene products were observed between the transformant and the recipient cell by two-dimensional polyacrylamide gel electrophoresis. The transformants which still possessed the same ability nodulate soybean (Glycine max.) as that of the original host strain, acquired the ability to induce tumor on Petunia hybrida like Agrobacterium, but formed the small crown galls in size compared to those of Agrobacterium tumefaciens.

  • PDF