• Title/Summary/Keyword: Brain GABA shunt

Search Result 10, Processing Time 0.029 seconds

Co-Localization of GABA Shunt Enzymes for the Efficient Production of Gamma-Aminobutyric Acid via GABA Shunt Pathway in Escherichia coli

  • Pham, Van Dung;Somasundaram, Sivachandiran;Park, Si Jae;Lee, Seung Hwan;Hong, Soon Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.710-716
    • /
    • 2016
  • Gamma-aminobutyric acid (GABA) is a non-protein amino acid, which is an important inhibitor of neurotransmission in the human brain. GABA is also used as the precursor of biopolymer Nylon-4 production. In this study, the carbon flux from the tricarboxylic acid cycle was directed to the GABA shunt pathway for the production of GABA from glucose. The GABA shunt enzymes succinate-semialdehyde dehydrogenase (GabD) and GABA aminotransferase (GabT) were co-localized along with the GABA transporter (GadC) by using a synthetic scaffold complex. The co-localized enzyme scaffold complex produced 0.71 g/l of GABA from 10 g/l of glucose. Inactivation of competing metabolic pathways in mutant E. coli strains XBM1 and XBM6 increased GABA production 13% to reach 0.80 g/l GABA by the enzymes co-localized and expressed in the mutant strains. The recombinant E. coli system developed in this study demonstrated the possibility of the pathway of the GABA shunt as a novel GABA production pathway.

Effects of the Anticonvulsant Drugs on Succinic Semialdehyde Reductase from Bovine Brain

  • Choi, Soo-Young;Cho, Sung-Woo;Choi, Eui-Yul
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.93-97
    • /
    • 1993
  • We have previously reported that an NADPH-dependent succinic semialdehyde reductase was purified homogeneously from bovine brain by several chromatographic procedures, and was found to be a monomeric protein with a molecular mass of 28 kDa (Cho et al., Eur. J. Biochem. 1993). Since succinic semialdehyde is an important intermediate in the ${\gamma}$-aminobutyrate(GABA) shunt and GABA level is associated with various forms of human neurological disorders, we have investigated the effects of anticonvulsant drugs on the succinic semialdehrde reductase. Among the drugs tested, sodium valproate and diphenylhydantoin inhibited the enzyme activity, while some other drugs, barbiturate and chlorpromazine, had no inhibitory effects on the enzyme activity. The purified enzyme was also injected as an immunogen into Balb/c mice to obtain monoclonal antibodies (mob) and several mobs to the protein were produced from the fusion experiments.

  • PDF

Stimulatory Effects of Ginsenosides on Bovine Brain Glutamate Decarboxylase

  • Choi, Soo-Young;Bahn, Jae-Hoon;Jeon, Seong-Gyu;Chung, Young-Mee;Hong, Joung-Woo;Ahn, Jee-Yin;Hwang, Eun-Joo;Cho, Sung-Woo;Park, Jin-Kyu;Baek, Nam-In
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.233-239
    • /
    • 1998
  • A GABA synthesizing enzyme, glutamate decarboxylase, has been purified from bovine brain by several chromatographic procedures. The preparation appeared homogeneous on SDS-PAGE. The enzyme is a homodimeric protein with a molecular mass of 120 kDa. The activation of glutamate decarboxylase by ginesenosides from Panax ginseng C.A. Meyer has been studied. Preincubation of the enzyme with total ginsenoside, $Rb_2$ and Rc ginsenosides, increased glutamate decarboxylase activities in a dose-dependent manner. There was a reproducible decrease in $K_m$, in addition to a increase in $V_{max}$, in response to increasing concentrations of the Rc ginsenoside fraction. Upon addition of the ginsenoside to the enzyme, a decrease in flurorescence intensity was discernible, together with an increase in emission anisotropy. Judging from the anisotropy values, the ginsenoside is rapidly trapped by the protein matrix. Total ginsenoside was administered to rats and the rat brains were removed for the measurement of the changes of GABA shunt regulating enzyme activities. Among the GABA shunt regulating enzymes, only the glutamate decarboxylase activities were increased after ginsenoside treatment. Therefore, it is suggested that the ginsenosides may elevate the GABA level in brain by activation of glutamate decarboxylase and the enzymatic activation might be due to the conformational change induced by binding of ginsenoside to the enzyme.

  • PDF

Purification and Characterization of Brain Succinic Semialdehyde Dehydrogenase

  • Song, M.S.;Lee, B.R.;Park, K.W.;Hong, J.W.;Yoo, B.K.;Cho, S.W.;S.Wee;Park, S.Y.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.71-71
    • /
    • 1995
  • The succinic semialdehyde dehydrogenase which is one of the key enzyme of GABA shunt in CNS has been purified from bovine brain homogeneously for the first time. The molecular mass of the native enzyme was estimated to be approximately 110,000 on gel filtration, The subunit molecular mass was determined by SDS-PAGE to be 54,000. These results indicate that the enzyme is a dimeric protein made up to identical subunits. Chemical modification studies of the enzyme suggest that the critical lysyl, connected with catalytic activity of the enzyme, The binding of IAF-SSDH(enzyme tagged with fluoreceine) to GABA transaminase which catalyzes the degradation of GABA was monitored by steady emission anisotropy. The changes of fluorescence anisotropy by interactions between two enzymes suggest that the formation of enzyme cluster must be invoved in the regulation of GABA concentration in brain tissues. The inhibitory effects of some antiepileptic and anticonvulsant drugs on the enzyme were also examined.

  • PDF

Chemical Modification of Bovine Brain Succinic Semialdehyde Reductase by Diethylpyrocarbonate

  • Lee, Byung-Ryong;Jeon, Seong-Gyu;Bahn, Jae-Hoon;Choi, Kyung-Soon;Yoon, Byung-Hak;Ahn, Yoon-Kyung;Choi, Eun-A;Lee, Kil-Soo;Cho, Sung-Woo;Choi, Soo-Young
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.254-258
    • /
    • 1999
  • The NADPH-dependent succinic semialdehyde reductase is one of the key enzymes in the brain GABA shunt, and it catalyzes the formation of the neuromodulator $\gamma$-hydroxybutyrate from succinic semi aldehyde. This enzyme was inactivated by diethylpyrocarbonate (DEP) with the second-order rate constant of $1.1{\times}10^3\;M^{-1}min^{-1}$ at pH 7.0, $25^{\circ}C$, showing a concomitant increase in absorbance at 242 nm due to the formation of N-carbethoxyhistidyl derivatives. Complete inactivation of succinic semialdehyde reductase required the modification of five histidyl residues per molecule of enzyme. However, only one residue was calculated to be essential for enzyme activity by a statistical analysis of the residual enzyme activity. The inactivation of the enzyme by DEP was prevented by preincubation of the enzyme with the coenzyme NADPH but not with the substrate succinic semialdehyde. These results suggest that an essential histidyl residue involved in the catalytic activity is located at or near the coenzyme binding site of the brain succinic semialdehyde reductase.

  • PDF

Effect of addition amino acids on the mycelial growth and the contents of β-glucan and γ-aminobutyric acid (GABA) in Sparassis latifolia (아미노산 첨가가 꽃송이버섯 균사체 성장 및 베타글루칸, GABA 함량 변화에 미치는 영향)

  • Jo, Han-Gyo;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.15 no.1
    • /
    • pp.38-44
    • /
    • 2017
  • Sparassis latifolia (formerly S. crispa) is used in food and nutraceuticals or dietary supplements, as rich in flavor compounds and ${\beta}-glucan$. Some previous studies have reported the effects of mushroom on brain function, including its neuroprotective effect. Thus, for this mushroom to be used as an effective nutraceutical for brain function, it would be desirable for it to contain other compounds such as ${\gamma}-aminobutyric$ acid (GABA) in addition to ${\beta}-glucan$. In this study, the enhancement of growth and GABA production in the mycelium of medicinal and edible mushroom S. latifolia was investigated. Amino acids were added externally as the main source of nutrition, and the effects of amino acids were investigated using liquid medium, specifically amino acid-free potato dextrose broth (PDB). The amino acids added were L-glutamic acid (named PDBG medium) and L-ornithine (named PDBO medium). The growth of mycelia was determined to be $0.9{\pm}0.00g/L$, $2.2{\pm}0.16g/L$, and $1.93{\pm}0.34g/L$ PDBG respectively. The GABA content was $21.3{\pm}0.9mg/100g$ in PDB medium, and it in PDBG 1.4% medium, at $115.4{\pm}30.2mg/100g$. However, the PDBO medium was not effective in increasing the GABA content of mycelia. Amino acids had little effect on the ${\beta}-glucan$ content of mycelia. The ${\beta}-glucan$ content was $39.7{\pm}1.4mg/100mg$, $34.4{\pm}0.2mg/100mg$, and $35.2{\pm}9.2mg/100mg$ in PDB, PDBG 1.8% and PDBO 1.4% media, respectively. Addition of glutamic acid and ornithine positively affected the growth of S. latifolia mycelia, and glutamic acid positively affected GABA production; no degradation of GABA was observed with addition of glutamic acid.

Isolation and Identification of Succinic Semialdehyde Dehydrogenase Inhibitory Compound from the Rhizome of Gastrodia elata Blume

  • Baek, Nam-In;Choi, Soo-Young;Park, Jin-Kyu;Cho, Sung-Woo;Ahn, Eun-Mi;Jeon, Seong-Gyu;Lee, Byung-Ryong;Bahn, Jae-Hoon;Kim, Yong-Kyu;Shon, Il-Hwan
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.219-224
    • /
    • 1999
  • In our search for the anticonvulsant consitutent of Gastrodia elata repeated column chromatographies guided by activity assay led to isolation of an active compound, which was identified as gastrodin on the basis of spectral data. Brain succinic semialdehyde dehydrogenase (SSADH) was inactivated by preincubation with gastrodin in a time-dependent manner and the reaction was monitored by absorption and fluorescene spectroscopic methods. The inactivation followed pseudo-first-order kinetics with the second-rate order constant of $1.2{\times}10^{3} M^{-1} min^{-1}$. The time course of the reaction was significantly affected by the coenzyme NAD^{+}$, which affected complete protection against the loss of the catalytic activity, whereas substrate succinic semialdehyde failed to prevent the inactivation of the enzyme. It is postulated that the gastrodin is able to elevate the neurotransmitter GABA levels in central nervous system by inhibitory action on one of the GABA degradative enzymes, SSADH.

  • PDF

Chemical Modification of Tryptophan Residue in Bovine Brain succinic Semlaldehyde Reductase

  • Hong, Joung-Woo;Jeon, Seong-Gyu;Bahn, Jae-Hoon;Park, Jin-Seu;Kwon, Hyeok-Yil;Cho, Sung-Woo;Choi, Soo-Young
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.583-587
    • /
    • 1997
  • Incubation of an NADPH-dependent succinic semialdehyde reductase from bovine brain with N-bromosuccinimide (NBS) resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order kinetics with the second-order rate constant of $6.8\times{10}^3$ $M^-1$ $min^{-1}$. The inactivation was prevented by preincubation of the enzyme with substrate succinic semialdehyde, but not with coenzyme NADPH. There was a linear relation-ship between oxindole formation and the loss of enzyme activity. Spectro-photometric studies indicated that about one oxindole group per molecule of the enzyme was formed following complete loss of enzymatic activity. It is suggested that the catalytic function of succinic semialdehyde reductase is modulated by binding of NBS to a specific tryptophan residue at or near the substrate binding site of the enzyme.

  • PDF

Inactivation of Brain Succinic Semialdehyde Reductase by o-Phthalaldehyde

  • Song, M.S.;Lee, B.R.;Jang, S.H.;Cho, S.W.;Park, S.Y.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.75-75
    • /
    • 1995
  • Succinic semialdehyde reductase, one of key enzyme of GABA shunt in CNS, is inactivated by o-phthalaldehyde, The inactivation followed pseudo first-order kinetics, and the second-order rate constant for the inactivation process was 28 M$\^$-1/s$\^$-1/ at pH 7.4 and 25$^{\circ}C$. The absorption spectrum(λ$\_$max/=377nm), fluorescence exitation(λ$\_$max/=340nm) and fluorescence emission spectra (λ$\_$max/=409nm) were consistent with the formation of an isoindole derivative in the catalytic site between a cysteine and a lysine residues about 3${\AA}$ apart. The substrate, succinic semialdehyde, did not protect the enzymatic activity against inactivation, whereas the coenzyme, NADPH, protected against o-phthalaldehyde induced inactivation of the enzyme. About 1 isoindole group per moi of the enzyme was formed following complete loss of the enzymatic activity. These results suggest that the amino acid residues of the enzyme participating in reaction with o-phthalaldehyde more likely residues at or near the coenzyme binding site.

  • PDF

Inactivation of Brain Succinic Semialdehyde Reductase by o-Phthalaldehyde

  • Choi, Soo-Young;Song, Min-Sun;Lee, Byung-Ryong;Jang, Sang-Ho;Lee, Su-Jin;Park, Jin-Seu;Choe, Joon-Ho;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.112-117
    • /
    • 1995
  • Succinic semialdehyde reductase was inactivated by o-phthalaldehyde. The inactivation followed pseudo-first order kinetics, and the second-order rate constant for the inactivation process was 28 $M^{-1}s^{-1}$ at pH 7.4 and $25^{\circ}C$. The absorption spectrum ($\lambda_{max}$ 337 nm) and fluorescence excitation ($\lambda_{max}$ 340 nm) and fluorescence emission spectra ($\lambda_{max}$ 409 nm) were consistent with the formation of an isoindole derivative in the catalytic site between a cysteine and a lysine residue approximately about 3 $\AA$ apart. The substrate, succinic semialdehyde, did not protect enzymatic activity against inactivation, whereas the coenzyme NADPH protected against o-phthaladehyde induced inactivation of the enzyme. About 1 isoindole group per mol of the enzyme was formed following complete loss of enzymatic activity. These results suggest that the amino acid residues of the enzyme participating in a reaction with o-phthalaldehyde are cysteinyl and lysyl residues at or near the NADPH binding site.

  • PDF