• Title/Summary/Keyword: Brake disk

Search Result 219, Processing Time 0.036 seconds

FEM Analysis of Caliper Housing Cut Inside Upper Face for Unbalance Wear Prevention of Disk Brake Pad (디스크 브레이크의 편마모 방지를 위한 finger 안쪽면 윗 부분이 가공된 캘리퍼 하우징의 유한 요소 해석)

  • Kim, Nam-Kyung;Kang, Jong-Pyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.89-100
    • /
    • 2002
  • The purpose if this research was to improve the pressure distribution on the disk brake pad Not uniform pressure distribution on the disk brake pad generate the unbalance wear of it and the unbalance wear of disk brake pad generate vibration, noise, heat and reduce the braking capacity. For improve the pressure distribution on the pad in this research, upper face of caliper housing finger was cut. Two kinds of caliper which uncut and cut of finger face were compared the stress distribution by FEM analysis and real experiment. Also natural frequency and deforming displacement ware calculated. It was understood that pressure distribution could Improve by cut inside upper face of caliper housing finger.

  • PDF

A Study for the Cooling Performance of a Brake with Heat Pipes (히트 파이프를 장착한 디스크브레이크의 냉각 성능에 관한 연구)

  • Kim, Moo-Geun;Ko, Sung-Kyu;Lee, Moon-Wan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.563-569
    • /
    • 2008
  • During braking operation, the surfaces of disk have severe contact conditions and high frictional heat would be generated between disk and pad surfaces. The heat makes high temperature gradient on disk surfaces and results in thermal deformation. To enhance the frictional heat dissipation, heat pipes are embedded in the ventilated type disk along the radial direction. The temperatures of the inner vent type disk and the brake disk with heat pipes are compared at the same operating conditions. By comparison a brake disk with heat pipes has higher cooling performance than the inner vent type disk.

Tribological Characteristics of proposed brake disk for Tilting train (틸팅차량용 제동 디스크의 트라이볼로지 특성 연구)

  • Park Kyung-sik;Kang Sung-woong;Cho Jeong-whan;Lee Hisung
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.491-497
    • /
    • 2005
  • Brake system is indispensible functional part to the transportation machines such as railroad cars, and all of industrial machines. It is mechanical element to stop the movement or slow the speed, transforming kinetic energy of motion object into thermal energy through solid friction. According that recently the railroad cars have become high-speed, the technique in braking domain to secure the overall braking effort is making rapid progress. In particular, material development and manufacturing process are so important to secure friction performance, which is the core in braking performance of mechanical brake units. Wear of brake disk could mainly result in the diminishment of its life span due to thermal cracking, so the endurance against high temperature is required. On the other hand, in this case, the problem is that the side wear of pad, relative material is slightly increased because of enlargement of plastic deformation. It is necessary, therefore, to develop a disk material that will be used in the Tilting System mechanical brake units. The purpose of this paper is to make a study prior to developing brake disk of Tilting Train travelling at 200km/h and to propose the component of brake disk. Accordingly, I will conduct sufficient researches on technical documents of brake disk, that are basic documentations, analyze an impact on components, and further, considering braking degree of train, study for the basic proposal on brake disk's component of the train travelling at 200km/h, which has relatively minor influence of heat stress and maintains the friction. In this respect, I would like to investigate friction characteristics between disk and relative friction material via Test on some possible test segments, analyze and propose friction performance, temperature impact and so forth coming from the contact with pad, relative material to demonstrate the friction characteristics.

  • PDF

Development of a Heat-resistant Brake Disk Material (내열성 제동 디스크 소재 개발)

  • Goo, Byeong-Choon;Lim, Choong-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1000-1004
    • /
    • 2007
  • Thermal cracks are among the key factors that control the quality of a brake disk. Thermal cracks may shorten the lifetime of the disc and increase brake noise. Therefore, high heat-resistant brake disk materials are needed. In this study, three kinds of disk material were tested. They are composed of C, Si, Mn, P, S, Cu, Cr, Mo, and Ni. For the three materials, tensile tests, hardness measurement, metallurgical structure analysis, image analyzer analysis, etc were carried out. And friction tests were performed by a small scale dynamometer.

  • PDF

A STUDY ON THE THERMAL FATIGUE TEST AND ANALYSIS METHOD FOR THE DEVELOPMENT OF BRAKE DISK MATERIALS

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.127-131
    • /
    • 2008
  • In the disk braking of the railway trains, kinetic energy of the vehicles is converted into thermal energy by friction between a brake disk and the pad materials. This can be cause of the iterative thermal shock and generates thermal cracks on the brake disk surface. In this study, we show the comparative thermal fatigue test procedures and thermal crack analysis process to evaluate the thermal fatigue characteristics of candidate materials designed for development of heat-resistant brake disk material. We carried out tests on the conventional brake disk materials used for Saemaul and Mugunghwa trains, then we comparatively analyzed the thermal crack initiation and propagation on the surface of a specimen. A thermal fatigue test procedure and a crack analysis process were suggested to evaluate the heat resistance of the developed materials at later studies.

  • PDF

A Study on Friction Coefficient of Disk Brake Lining for Rolling Stock According to Disk Type (디스크 타입에 따른 철도차량용 디스크 브레이크 라이닝의 마찰계수 특성에 관한 연구)

  • Kwon Sung-Tae;Kim Won-Kyung;Kim Jeong-Guk;Yoon Sung-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.472-476
    • /
    • 2004
  • In this study, we investigate the change characteristic of friction coefficient of disk brake lining for rolling stock according to disk type, The actual brake tests were carried out under constant brake force and operating sequence by using dynamo-tester. Test results showed that instant friction coefficient was higher in the case of devided disk type rather than single body disk type, Also, averge friction coefficient was appeared similer to the above result. It is thought that ,in the case of devided disk type, friction resistance was increased due to the gap between both side of half disk.

  • PDF

Failure Study for Tribological Characteristics Including with Pad, Lining and Hub disk in Vehicle Brake System (자동차 제동시스템의 패드, 라이닝, 허브디스크에 관련된 트라이볼로지적인 특성에 관한 고장사례연구)

  • Lee, Il-Kwon;Kim, Chung-Kyun;Cho, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.27 no.5
    • /
    • pp.269-274
    • /
    • 2011
  • The purpose of this paper is to study and analyze the improvement method for the failure examples including the vehicle brake system in actual field. It was verified that the indicator plate of pad wear scratched the brake disk because of wearing after displacement of non- identification parts pad. The caliper of other vehicle was installed with brake system verified the phenomenon produced groove in center point because of one side wear when the pad was not fully contacted with the rub disk by other action surface pressure and pad action condition. It verified that the crack phenomenon fatigue was produced by brake thermal deformation because of decreasing the thickness by grinding to modify the non-uniformed wear of brake disk. It verified that the friction sound was produced by the friction phenomenon because of non-uniformed contact of lining and an alien substance with inner of the drum and lining braking by crack phenomenon with brake drum surface.

Optimization and Structure Analysis of Brake Disc for Free-fall Winch (자유 낙하 윈치용 브레이크 디스크의 구조해석 및 최적설계)

  • Ku, Hyoun-Kon;Kim, Jin-Woo;Won, Cheon;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.55-61
    • /
    • 2012
  • The structure of winch brake disk was successfully designed and developed based on sizing optimization. In this research, static analysis was performed by commercial software ANSYS v12.0. To simulate the working process of disk brake, the real properties of materials and working conditions were considered. Based on the results of the static structural analysis, the existing designs of the brake discs were optimized. Among existing designs, there are three cases that have achieved an efficient light weight around 200g. As a result, the optimized weight of each case was 3.41kg, 3.42kg, and 3.44kg, respectively. Finally, through prototyping and performance testing, the stability of the optimized brake disc was verified. Although, this free-fall winch brake disk had been developed in design and evaluation techniques, more detailed plans for developing the disk brake structure were also proposed as a further study based on this research.

A Study on Thermal Analysis of Motorcycle Brake Disk (모터싸이클 브레이크 디스크의 열 해석에 관한 연구)

  • Ryu, Mi-Ra;Kim, Young-Hee;Byon, Sang-Min;Park, Heung-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.34-40
    • /
    • 2009
  • The effect of frictional factors on thermal stress and deformation volume of motorcycle brake disk was studied by using a disk-on-pad type friction tester. It has an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors. In this study, thermal stress and deformation volume by using design of experiment with 4 elements were investigated for thermal analysis with regression analysis. Thermal stress and thermal deformation are obtained by the application of temperature from mechanical test. From this study, the result showed that the motorcycle brake disk with ventilated hole 3 had the most excellent thermal stress and deformation volume. The regression equation had a trust rate of 95% for the prediction of thermal stress and deformation volume of motorcycle brake disk was composed.

  • PDF