• Title/Summary/Keyword: Braking systems

Search Result 249, Processing Time 0.034 seconds

Characteristic Test of the Electro Mechanical Brake Actuator for Urban Railway Vehicles (도시철도용 전기기계식 제동장치의 특성시험)

  • Kim, Min Soo;Oh, Seh Chan;Kwon, Seok Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.535-540
    • /
    • 2016
  • The braking device in railway vehicles decelerates or stops the train by dissipating the thermal energy converted from kinetic energy into the air. Therefore, the brake system is crucial for safety. In this paper, we performed a study on an electromechanical brake actuator using an electrical motor as an alternative to pneumatic air cylinders to reduce the idle running time in braking, which subsequently increases braking distance, and to ensure reliable response characteristics. Especially, to analyze the response characteristics of the electromechanical brake actuator, we measure the delay time, response time and power consumption compared to the air cylinder. It is confirmed that the electromechanical brake actuator can reduce reaction time by 0.1 seconds (Braking Action) and 0.46 seconds (Brake Release) compared to the air cylinder.

Optimization of longitudinal viscous dampers for a freight railway cable-stayed bridge under braking forces

  • Yu, Chuanjin;Xiang, Huoyue;Li, Yongle;Pan, Maosheng
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.669-675
    • /
    • 2018
  • Under braking forces of a freight train, there are great longitudinal structural responses of a large freight railway cable-stayed bridge. To alleviate such adverse reactions, viscous dampers are required, whose parametric selection is one of important and arduous researches. Based on the longitudinal dynamics vehicle model, responses of a cable-stayed bridge are investigated under various cases. It shows that there is a notable effect of initial braking speeds and locations of a freight train on the structural responses. Under the most unfavorable braking condition, the parameter sensitivity analyses of viscous dampers are systematically performed. Meanwhile, a mixing method called BPNN-NSGA-II, combining the Back Propagation neural network (BPNN) and Non-Dominated Sorting Genetic Algorithm With Elitist Strategy (NSGA-II), is employed to optimize parameters of viscous dampers. The result shows that: 1. the relationships between the parameters of viscous dampers and the key longitudinal responses of the bridge are high nonlinear, which are completely different from each other; 2. the longitudinal displacement of the bridge main girder significantly decreases by the optimized viscous dampers.

A Simulation Program for the Braking Characteristics of 8$\times$4 Vehicles (8$\times$4 차량의 제동특성 시뮬레이션 프로그램 개발)

  • 서명원;박윤기;권성진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.119-128
    • /
    • 2001
  • Recently safety systems for the commercial vehicle have been rapidly developed. However, we still have many problems in the vehicle stability and the braking performance. Especially, a commercial vehicle may meet a dangerous braking condition when the vehicle is lightly loaded or empty and the road is wet or slippery. To design the air brake system for commercial vehicles, since the air brake system has many design variables, there must have been intensive researches on a method how to prevent dynamic instability and how to maximize the vehicle deceleration. In this study, mathematical models about an 8$\times$4 vehicle and an air brake system including an ABS controller have been constructed for computer simulation. Also, simple examples are applied to show the usefulness of the computer program. Designers can use this simulation program for understanding the braking characteristics of 8$\times$4 commercial vehicles such as trajectory, braking distance, longitudinal deceleration, lateral deceleration, and yaw rate on various road conditions.

  • PDF

Dynamic braking control technique for improving transient stability of the power system (과도안정도 향상을 위한 동적제동 제어기법)

  • Shin, Myung-Chul;Park, Ki-Heon;Min, Hyoung-Bok;Kwon, Myung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.57-60
    • /
    • 1993
  • This study suggests a dynamic braking control algorithm in order to improve the transient stability of a multimachine power system. Dynamic braking control has been known as an effective method by which transient stability of power systems could be improved. Under the context, the study suggests a modified MRVM which possibly handles more rapid on-line computation through the improvement of the conventional MRVM(Model Referenced Velocity Matching). In order to resolve the phenomenon of stability recovery hinderance due to the prolonged dynamic braking control under the stable equilibrium state and chattering problem, the study also composes an algorithm in such a way that dynamic braking control could be prohibited by setting-up absolute stability region, Lastly, a comparison with the results derived from the application of the conventional control technique to the model power system is made in order to prove the superiority of the suggested control technique.

  • PDF

Absolute Vehicle Speed Estimation of Unmanned Container Transporter using Neural Network Model (무인 컨테이너 운송차량의 절대속도 추정을 위한 뉴럴 네크워크 모델 적용)

  • Ha, Hee-Kwon;Oh, Kyeung-Heub
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.227-232
    • /
    • 2004
  • Vehicle dynamics control systems are complex and non-linear, so they have difficulties in developing a controller for the anti-lock braking systems and the auto-traction systems. Currently the fuzzy-logic technique to estimate the absolute vehicle speed supplies good results in normal conditions. But the estimation error in severe braking is discontented In this paper, we estimate the absolute vehicle speed of UCT(Unmanned Container Transporter) by using the wheel speed data from standard anti-lock braking system wheel speed sensors. Radial symmetric basis function of the neural network model is proposed to implement and estimate the absolute vehicle speed, and principal component analysis on input data is used 10 algorithms are verified experimentally to estimate the absolute vehicle speed and one of them is perfectly shown to estimate the vehicle speed within 4% error during a braking maneuver.

Risk Assessment for Pneumatic Braking of EMU (철도차량 제동장치의 위험도 평가)

  • Lee, Sung-Kwun;Kim, Jong-un;Koo, Jeong-Seo
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.114-122
    • /
    • 2015
  • FMEA and FTA have been widely applied to the safety studies for railway systems respectively. But it would be more effective to use these two methods at a same time because these are complementary. This article suggests a FMEA-FTA combined analysis technique to evaluate the risk for railway systems. A FMEA-FTA combined risk evaluation model and process are proposed and a case study is dealt with for PBU(Pneumatic Breaking Unit), a major subsystem of a railway vehicle.

Advanced Real time IoT Eco-Driving Assistant System

  • Jouini, Anis;Cherif, Adnane;Hasnaoui, Salem
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.237-244
    • /
    • 2022
  • Eco-driving of vehicles today presents an advantage that aims to reduce energy consumption and limit CO2 emissions. The application for this option is possible to older vehicles. In this paper, we propose an efficient implementation for IoT (Internet of Things) system for controlling vehicle components that affect the quality of driving (acceleration, braking, clutch, gear change) via Smartphone using Wi-Fi and BLE as communication protocol. The user can see in real-time data from sensors that control driver action on vehicle driving systems such as acceleration, braking, and vehicle shifting through a web interface. Thanks to this communication, the user can control his driving quality and, hence, eco-driving can be achieved

Five-level Inverter for Excitation Control of SRM Drive

  • Oh, Seok-Gyu;Park, Sung-Jun;Ahn, Jin-Woo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.3
    • /
    • pp.64-69
    • /
    • 2001
  • Energy recovery in the regenerative region is very important when SRM is used in traction drive, This is to reduce en-ergy loss during mechanical braking and/or to have a high efficiency drive during braking To control excitation voltage in motor operation and regenerative voltage in the generator operation in the SRM multi-level voltage control is effective The paper sug-gests multi-level inverter which is useful for motoring and regenerative operation in SRM

Single-Chip Microprocessor Control for Switched Reluctance Motor Drive

  • Hao Chen;Ahn, Jin-Woo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.207-213
    • /
    • 2002
  • The paper introduces a switched reluctance motor drive system based on an 80C31 and an Intel 80C 196KB single-chip microprocessor control. Advance schemes are used in turn-on and turn-off angles with the power converter's main switches during traction and regenerative braking. The principles of traction speed control and braking torque control are given. The hardware and software patterns in the 80c31 and the Intel 80C196KB single-chip microprocessor control system are also presented.

A Study on Train Braking Performance Assessment Methods Using Braked Weight Percentage (제동중량비율을 이용한 도시철도차량 제동성능 평가방법 연구)

  • Choi, Don-Bum;Lee, Kang-Mi;Yoon, Yong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.545-551
    • /
    • 2016
  • In this study, we evaluate the braking performance of an urban railway vehicle to verify its basic safety condition. The braking performance evaluation methods, deceleration measurement and braked weight percentage, were compared for trains with different numbers of cars, in order to assess the advantages of each method and their compatibility. With a probabilistic braking model, the effect of the adhesion coefficient distribution was analyzed in accordance with the train composition. A train with many cars has a narrower deceleration distribution width than one with few cars. The braked weight percentage method is expected to be useful in the design of train signal systems, because it allows the braking distance to be calculated for various initial brake velocities. The deceleration distribution model and its results are expected to be useful as a basis for precise train signal design.