• Title/Summary/Keyword: Braking systems

Search Result 249, Processing Time 0.035 seconds

Methodology for Estimating Safety Benefits of Advanced Driver Assistant Systems (첨단 운전자지원시스템의 교통안전 효과추정 방법론)

  • Jeong, Eunbi;Oh, Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.65-77
    • /
    • 2013
  • Recent advanced sensors and communication technologies have been widely applied to advanced safety vehicle (ASV) for reducing traffic accident and injury severity. To apply the advanced safety vehicle technologies, it is important to quantify the safety benefits, which is a fundamental for justifying application. This study proposed a methodology for quantifying the effectiveness of the advanced driver assistant system (ADAS), and applied the methodology to lane departure warning system (LDWS) and automatic emergency braking system (AEBS) which are typical advanced driver assistant systems. When the proposed methodology is applied to 2008-2010 gyeonggi-province crash data, LDWS would reduce about 10~14% of relevant crashes such as head-on, run-off-the road, rollover and fixed-object collisions on the road. In addition, AEBS could potentially prevent about 50% of total rear-end crashes. The outcomes of this study support decision making for developing not only vehicular technology but also relevant safety policies.

Optimal torque control of noncontact type eddy current brake system (비접촉식 와전류형 제동 장치의 최적 토오크 제어)

  • 이갑진;박기환;류제하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.261-264
    • /
    • 1997
  • A contactless eddy current type braking system is developed to take advantages of the recent brake system which uses hydraulic force can show high efficiency in a certain velocity region, but not in a high velocity region, and has initial response delay time and pressure build-up time which make stopping distance longer. These are the limits of mechanical brake system of a contact type, which makes a concept brake system required. So, in this paper, the contactless brake system .of a inductive current type is chosen instead of hydraulic brake system. This brake system can be used almost forever for being no wear and contributed to lightening weight of a vehicle. Besides, the contactless brake system can be used as that of electric or solar car with anti-lock brake system. The analysis of induced electromotive force and braking torque obtained with theoretical approximate model, the design of a braking system and a nonlinear controller, and the results of simulation of the ABS, experiment are included.

  • PDF

A Study on Absorption Device of Surge Rising Pressure Occurring when Suddenly Braking Action in the Hydraulic Driving Part of Textiles Let off (섬유송출 유압구동부 급제동시 발생하는 충격상승압 흡수장치에 관한 연구)

  • 이재구;김정현;김도태;김성동;정선환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.84-91
    • /
    • 2003
  • The equipment of textiles let off is a part of inspection machine which inspects finished textiles and it checks up textiles through that. This study suggests a method to select the capacity and initial gas pressure of accumulator to control surge rising pressure occurring when suddenly braking action to a desired degree. An accumulator in hydraulic systems is by hydraulic machinery which stores kinetic energy of inertia body during braking. A series of computer simulations were done for the brake action The results of the simulation work were compared with those of experiments.

A Study on Reducing Speed Control of Hydraulic Motor of Textiles Supply Rolling Equipment (섬유공급 롤링장치의 유압모터 감속도 제어에 관한 연구)

  • 이재구;김도태;김성동
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.62-67
    • /
    • 2001
  • The textiles supply rolling equipment is a part of inspection machine which inspect finished textiles and it check up textiles through rolling hydraulic equipment. This study suggests a method to select the capacity and initial gas pressure of accumulator to control reducing speed of the hydraulic motor to a desired degree. An accumulator in hydraulic systems is hydraulic machinery which stores kinetic energy of inertia body during braking. A series of computer simulations were done for the brake action and the selection method was based upon a trial and error approach. The results of the simulation work were compared with those of experiments and these results show that the proposed method can be applied effectively to control reducing speed of the hydraulic motor when braking action in textiles rolling system.

  • PDF

Simple Dynamometer for Dynamics Investigation of Induction Motor

  • Inpradab, Tanin;Pongswatd, Sawai;Masuchun, Ruedee;Ukakimapurn, Prapart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.821-824
    • /
    • 2005
  • This paper presents a technique to evaluate torque and speed characteristics of induction motor with the Dynamometer. The simple Dynamometer controlled via microcontroller and displayed by computer. The Microcontroller generates the PWM (Pulse Width Modulation) signal and control the duty cycle of signal for control braking level. The Buck converter is a braking unit which uses IGBT as switch in circuit. The output current of the Buck converter and output voltage of tacho generator are converted to digital signals and analyzed by microcontroller. The signals are then sent to computer for displaying torque and speed responds independent on the braking time. The test results of the Dynamometer in this research can coreectly predict the torque and speed response under reasonable tests. Moreover, this Dynamometer is easy and inexpensive to make.

  • PDF

Formation and Evolution of Contact Binaries

  • Eggleton, Peter P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.145-149
    • /
    • 2012
  • I describe a series of processes, including hierarchical fragmentation, gravitational scattering, Kozai cycles within triple systems, tidal friction and magnetic braking, that I believe are responsible for producing the modest but significant fraction of stars that are observed as contact binaries. I also discuss further processes, namely heat transport, mass transport, nuclear evolution, thermal relaxation oscillations, and further magnetic braking with tidal friction, that influence the evolution during contact. The endpoint, for contact, is that the two components merge into a single star, as recently was observed in the remarkable system V1309 Sco. The single star probably throws off some mass and rotates rapidly at first, and then slows by magnetic braking to become a rather inconspicuous but normal dwarf or subgiant. If however the contact binary was part of a triple system originally-as I suggested above was rather likely-then the result could be a $widish$ binary with apparently non-coeval components. There are several such known.

A Scale-down Simulator for High-speed Railway Train (고속전철 모의시험 장치)

  • Ryoo, Hong-Je;Woo, Myung-Ho;Kim, Jong-Soo;Rim, Geun-Hie;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1140-1142
    • /
    • 2000
  • This paper describes a down-scaled model for a high-speed railway train. The propulsion system of simulator consists of four line-side converters four induction motors driven by two inverters, an eddy current braking system, two dynamic braking systems. The control algorithm of traction and braking including anti-skid control can be developed using the simulator. Simulator design procedure. control algorithm and some experimental waveforms are presented in this paper.

  • PDF

Design an Anti-Skid System using Fuzzy Model-Based Controller (퍼지 모델 기반 제어기를 이용한 안티 스키드 시스템의 설계)

  • Lee, Sung-Ho;Kim, Young-Guk;Kim, Seog-Won;Park, Jin-Bae
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1276-1281
    • /
    • 2006
  • In general, the wheel-skid prevention of braking system is very important in modern railway applications. This is because wheel-skid can lead to an increase in noise and vibration from wheels with flat points, as well as an increased braking distance. However conventional anti-skid control has problems because wheel adhension and skid characteristics are very difficult nonlinear systems and time consuming to accurately model. In this paper, we design a fuzzy controller using a model of relation between ahdension and braking force, we show that anti-skid fuzzy controller has a very good performance, performing better than the previous conventional controller.

  • PDF

Precise Braking Torque Control for Momentum Flywheels Based on a Singular Perturbation Analysis

  • Zhou, Xinxiu;Su, Dan
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.953-962
    • /
    • 2017
  • Momentum flywheels are widely applied for the generation of small and precise torque for the attitude control and inertial stabilization of satellites and space stations. Due to its inherited system nonlinearity, the tracking performance of the flywheel torque/speed in dynamic/plug braking operations is limited when a conventional controller is employed. To take advantage of the well-separated two-time-scale quantities of a flywheel driving system, the singular perturbation technique is adopted to improve the torque tracking performance. In addition, the composite control law, which combines slow- and fast- dynamic portions, is derived for flywheel driving systems. Furthermore, a novel control strategy for plug braking dynamics, which considers couplings between the Buck converter and the three-phase inverter load, is designed with easy implementation. Finally, experimental results are presented to demonstrate the correctness of the analysis and the superiority of the proposed methods.

Experimental verification of the brake performance analysis for the high speed train (고속철도 차량의 제동성능 해석에 대한 실험적 검증)

  • Kim, Young-Guk;Kim, Seog-Won;Park, Chan-Kyeong;Lee, Sung-Ho;Park, Tae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.68-76
    • /
    • 2007
  • In general, the braking system of a high speed train has an important role for the safety of the train. To stop safely the train at its pre-decided position, it is necessary to properly combine the various brakes. The train has adopted a combined electrical and mechanical (friction) braking systems. In order to design a good brake system, it is essential for designers to predict the brake performance. In this paper, the braking performance analysis program has been developed and verified by comparing the simulation results with the brake test results of HSR-350x; both results match very well. Also, the brake performances of high speed trains can be predicted by using this program under various conditions.