• Title/Summary/Keyword: Branchline coupler

Search Result 5, Processing Time 0.036 seconds

Output Signal Characteristics according to Input Signal Characteristics of Two Input Ports in 4-port Coupler Circuit (4단자 커플러 회로에서의 두 개 단자의 입력 신호 특성에 따른 출력 신호 특성)

  • Park, Ung-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.68-70
    • /
    • 2015
  • The four-port coupler circuit consists of input port, isolation port and two output ports. When it inserts a signal at the input port and the isolation port, the magnitude and phase of the output signal at two output ports are decided by the magnitude and phase of the input signal. This paper analyzes the output signal characteristic of two output ports due to the input signal magnitude and phase of two input ports using the typical 4-port coupler circuit, Branchline hybrid coupler and Ring-hybrid coupler. And, it studies about new way to use branchline hybrid coupler and ring-hybrid coupler on the basis of the this information.

  • PDF

A variable power divider circuit using the combine characteristic of the branchline coupler (브랜치라인 커플러 결합을 이용한 가변 전력 분배기 회로)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.245-251
    • /
    • 2017
  • The proposed variable pawer divider in this paper is composed of one equal power 2-way Wilkinson power divider, two variable phase shifters with 90-degree phase variation to be connected two output paths of the 2-way power divider, and one branchline coupler to combine output signals of two variable phase shifter. The proposed variable power divider can theoretically have an arbitrary power division ratio ranging from ${\infty}:1$ to ${\infty}:1$ due to 90-degrees phase variation of two phase shifter. The proposed power divider circuit fabricates on laminated TLX-9(h=20 mil, er=2.5; Taconic) with a center frequency of 1.7 GHz. The power division ratio of the fabricated prototype varies from about 1:100 to 200:1, with an input reflection characteristic(S11) of below -16 dB, an insertion loss of about -1.0 dB, and an isolation characteristic of below -17 dB between two output ports in the range 1.65-1.75 GHz.

The 90° hybrid Coupler having the same output power slope at two output ports (두 개의 출력단자에 동일한 출력 전력 기울기를 갖는 90° hybrid Coupler)

  • Park, Ung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.85-88
    • /
    • 2016
  • Two output ports of $90^{\circ}$ hybrid-coupler are generally the same output power with $90^{\circ}$ phase difference. But, Two output ports of $90^{\circ}$ hybrid-coupler must be the different output slope characteristic about frequency because of the different electrical length. In $90^{\circ}$ hybrid-coupler being the same power distribution, 3-dB power distribution at two output ports only exists near the center frequency. And, the output power difference between two output ports increases in accordance with the further away from the center frequency. This paper proposes $90^{\circ}$ hybrid-coupler being the similar output slope characteristic of two output ports in wideband to modify the ${\lambda}/4$ transmission line of $35-{\Omega}$ characteristic impedance between input port and output port near input port. The power difference between two output ports of the proposed circuit is below 0.2dB over 20% bandwidth of the center frequency in ADS(advanced Design System).

  • PDF

Wideband 6-port Phase Correlator Using Caxial Cable Impedance Transformer and Wireline Coupler (동축선 임피던스 변환기와 Wireline Coupler를 이용한 광대역 6-단자 위상 상관기)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1188-1195
    • /
    • 2022
  • The 6-port phase correlator consists of one in-phase power divider and three 3-dB 90-degree phase difference power dividers, and is mainly used in a demodulation circuit that determines the phase of an input signal. This paper proposes the wideband 6-port phase correlator that consists of an in-phase power divider using a wideband 2:1 impedance transformer with three 37.5-Ω coaxial cables, and a 3-dB 90-degree phase difference power divide using Wireline. The proposed wideband phase correlator fabricated at a center frequency of 1000MHz has the value of the input reflection coefficient(S11 and S22) -14dB or less in the frequency range of 640~1270MHz. Also, the signal transmission characteristic(Si1), from the in-phase power divider input port to four output ports, has the amplitude of -6.5±0.6dB and the phase error of within ±3.4°, and the signal transmission characteristic(Si2), from the 90 degree phase difference power divider input port to four output ports, has the amplitude of -6.1±0.6dB and the phase error of within ±6.2°.

X-band Compact Digital Phase Shifter Design (X 대역 소형 디지털 위상 천이기 설계)

  • 엄순영;전순익;육종관;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.907-915
    • /
    • 2002
  • In this paper, a compact digital phase shifter to be used an active phased array antenna system for satellite communications was proposed. The even and odd mode analysis for a given reflection-type phase shifter, which uses a folded hybrid coupler as a base element, was performed and the design parameters were derived. Also, to verify experimentally the electrical performances of the proposed structure, X-band 4-bit digital phase shifter was designed and fabricated using Teflon soft substrate $({\varepsilon}_r; =\;2.17)$. Its circuit size was less than 3.5 cm $\times$ 3.0 cm, and it exhibited at least 50 % size reduction as compared with the conventional unfolded configuration. The experimental results of the fabricated phase shifter showed that the average insertion loss and insertion loss variation were less than 3.5 dB, $\pm$ 0.6 dB within the operating band, 7.9 ~ 8.4 GHz, respectively. And, input and output return loss were more than 10 dB, respectively. Also, the phase response of the phase shifter showed 4-bit operation with $\pm$3$^{\circ}$ rms phase error.