• 제목/요약/키워드: Breakdown in Liquid

검색결과 168건 처리시간 0.019초

극저온 전력케이블을 액체질소에 대한 방전특성에 관한 연구 (A study on the discharge characteristics of liquid nitrogen using at cryogenic cable)

  • 이현동;주재현;박원주;이광식;이동인
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1996년도 추계학술발표회논문집
    • /
    • pp.125-129
    • /
    • 1996
  • This study describes that electrical breakdown of liquid nitrogen which is influenced with bubble has been investigated as liquid nitrogen is used coolant of high temperature(T/sub c/) superconductivity. In order to investigate breakdown of liquid nitrogen, we formed electrode system of parallel and vertical configuration toward gravitutional direction. In case of changing with electrode configuration of equal electrode and gap spacing in uniform and nonuniform electric field bubble behavior is changed. In result of that, breakdown voltage is changed. Therefore, this study proved that electrode configuration must be formed the smallest existing probability of bubble between two electrodes in order to increase breakdown strength of liquid nitrogen at atmosphere pressure.

  • PDF

고온초전도 한류기의 절연설계를 위한 과냉각 액체질소의 절연내력 특성 (Dielectric Characteristics of Subcooled $LN_2$ for Insulation Design of HTS Fault Current Limiters)

  • 백승명;정종만;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.46-50
    • /
    • 2003
  • In the dielectric insulation design of any high temperature superconducting (HTS) apparatus as well as HTS fault current limiter in the electrical power systems, the breakdown characteristics of cryogenic coolants such as liquid nitrogen ($LN_2$) are an important factor of the insulating engineering. Previous reports concerned with the breakdown characteristics of liquid nitrogen have pointed out that bubbles and gaseous nitrogen have a treat influence on their breakdown phenomena, However, useful data for practical insulation design of HTS fault CUITent limiter operating at subcooled L$N_2$ have not been obtained enough. Therefore, this paper presents an experimental investigate of breakdown phenomena in liquid nitrogen under AC voltage, And, we observed the breakdown voltage (BDV) of liquid nitrogen with lowering temperature. The Weibull plots of the breakdown voltage of subcooled $LN_2$ for the needle-plane electrode with d= 10 mm are studied, The dependence of breakdown voltage for needle-plane and pancake coil-pancake coil electrode on temperature is illustrated, The relationship between the AC breakdown characteristics and the temperature were clarified.

액체의 레이저 유기 절연파괴를 이용한 신개념 표면 세정 공정 (A novel surface cleaning process using laser-induced breakdown of liquid)

  • 장덕석;이종명;김동식
    • 한국레이저가공학회지
    • /
    • 제12권4호
    • /
    • pp.17-25
    • /
    • 2009
  • The surface cleaning method based on the laser-induced breakdown (LIB) of gas and subsequent plasma and shock wave generation can remove small particles from solid surfaces. In the laser shock cleaning (LSC) process, a high-power laser pulse induces optical breakdown of the ambient gas above the solid surface covered with contaminant particles. The subsequently created shock wave followed by a high-speed flow stream detaches the particles. In this work, a novel surface cleaning process using laser-induced breakdown of liquid is introduced and demonstrated. LIB of a micro liquid jet increases the shock wave intensity and thus removes smaller particle than the conventional LSC method. Experiments demonstrate that the cleaning force and cleaning efficiency are also increased significantly by this method.

  • PDF

극저온 액체 및 기체 질소의 압력에 따른 절연파괴 특성 (Effects of Pressure on the Breakdown Characteristics of Cryogenic Liquid and Gaseous Nitrogen)

  • 백승명;정종만;김상헌
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권2호
    • /
    • pp.1-4
    • /
    • 2002
  • Electrical properties of liquid nitrogen ($LN_2$) and gaseous nitrogen($GN_2$) have become of great interest again since the discovery of high temperature superconductors . It is very important from a point of superconducting apparatus protection to elucidate breakdown characteristics in $LN_2$ and $GN_2$ at atmospheric and pressurized conditions Therefore. this paper studies the effect of pressure on the breakdown characteristics in $LN_2$ and $GN_2$. Af high voltage is applied to electrode system with uniform and non-unform field in various gap length. And Breakdown voltages of $LN_2$ and $GN_2$ are investigated under AC voltage for Pressure ranging from 0 and 0.5 MPa. This research presented basis information of electrical insulation design for liquid nitrogen immersed HTS power apparatus.

극저온 액체의 동적 절연파괴 특성 (Dynamic Electrical Breakdown Characteristics of Cryogenic Liquid)

  • 김상현;김현희;김영석;정종만;정순용
    • 한국전기전자재료학회논문지
    • /
    • 제11권4호
    • /
    • pp.321-326
    • /
    • 1998
  • Electrical breakdown characteristics of liquid nitrogen($LN_2$) taking into consideration for application of high $T_c$ superconductor is very important. Also $LN_2$ will be used as both coolant and insulator in superconducting generator. In this paper, we investigated ac breakdown characteristics of cryogenic nitrogen gas above a $LN_2$ for rod-to plane electrode configuration. As result the breakdown mechanism of $LN_2$is dependence on bubble effect. And breakdown voltage is a ratio on bubble s size but electrodes arrangement is to make no difference. The breakdown voltage decreases slightly with increasing flow velocity, it again decreases abruptly with increasing flow velocity. These results were interpreted as the within pressure of rod electrode and Maxwell force.

  • PDF

고온초전도 기기응용을 위한 모의 \ulcorner치 환경에서 액체질소의 절연파괴 특성 (Electrical Breakdown Characteristics of LN2 under Simulated Quenching Conditions for Application of HTS Apparatus)

  • 백승명;정종만;김상현
    • 한국전기전자재료학회논문지
    • /
    • 제15권11호
    • /
    • pp.985-990
    • /
    • 2002
  • The electrical breakdown characteristics of liquid nitrogen(LN$\sub$2/) were studied under simulated quenching conditions for application of HTS apparatus. The experimental results for various quenching condition revealed that the breakdown voltage of LN$\sub$2/ with bubble flow velocity and gap spacing. In the case, breakdown voltage decreases gradually with the bubble velocity. When it is bubble velocity from 0 to 1 $\ell$ /min, breakdown voltage rapidly decreases but decreases from 2 $\ell$/min to 10 $\ell$/min slowly. The breakdown voltage for vertical electrode arrangement is higher than that for horizontal electrode arrangement. Also, it did a electric field and potential distribution interpreting at the liquid nitrogen when the bubble existed. The plots of equipotential lines for three cases are also shown.

액체 $N_2$의 동적 절연파괴 특성 (Dynamic Electrical Breakdown Characteristics of Liquid Nitrogen)

  • 김영석;정종만;곽민환;백승명;장현만;김상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.359-362
    • /
    • 1998
  • Electrical breakdown characteristics of liquid nitrogen(LNd used as both coolant and insulator for high $T_c$ superconductor system is very important. This paper presents dynamic breakdown characteristics of liquid nitrogen by quench penomena of thermal bubble under high electric field. As the result, the breakdown mechanism of $LN_2$ depends on thermal bubble effect. The breakdown voltage decreases slightly with increasing heating. In the Electrode arrangement, electrical breakdown voltage of horizontal arrangement appears lower than that of vertical arrangement.

  • PDF

고온초전도 케이블의 응용을 위한 PPLP의 절연파괴 특성연구 (Study on the Breakdown Performance of Synthetic Polypropylene Laminated Paper for Application of a HTS Cable)

  • 곽동순;김영석;김해종;김상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 유기절연재료 방전 플라즈마연구회
    • /
    • pp.65-68
    • /
    • 2003
  • In this paper, we researched breakdown characteristics of paper/liquid nitrogen composite insulation system for application of a high temperature superconducting cable. And, we have studied the AC breakdown performance of paper/ice composite insulating system immersed in liquid nitrogen. The electric strength in this paper/ice composite system is higher than that of paper/liquid nitrogen system. Furthermore this system shows a self-healing type breakdown behavior. Among the many kinds of liquid to be immersed and frozen to the ice, deionized water gives the highest electric breakdown strength. The paper/ice composite insulation system is thought to be one of good candidate for the electrical insulating system at cryogenic temperature.

  • PDF

액체 질소에서의 반합성지 AC 파괴 강도에 미치는 부분 방전의 영향 (Study of Partial Discharge Influence on AC Breakdown Strength of Laminated Ploypropylene Paper(PPLP) at Liquid Nitrogen)

  • 안드레프;김수연;이인호;김도운;신두성;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.105-109
    • /
    • 2002
  • The short-term AC breakdown strength of laminated polypropylene insulating Paper (PPLP) has been studied for cold dielectric of high temperature superconductivity power cables. The design and operating conditions of the electrode system for studying of short-term breakdown strength of one-layer and multi-layer PPLP samples are discussed in liquid nitrogen(LN2) state. The influence of various operating factors (geometry and dimension of electrodes, speed of tested voltage, thickness of test sample) on the value of short-term AC breakdown strength at cryogenic temperature has been established.

액체질소 중 열기포 형상 및 절연 특성 (Shape and Dielectric Strength of Thermal Bubbles in Liquid Nitrogen)

  • 백승명;김해종
    • 한국전기전자재료학회논문지
    • /
    • 제28권5호
    • /
    • pp.326-331
    • /
    • 2015
  • In this paper, we study the insulating properties of the liquid nitrogen(LN2) including the thermal bubbles. The shape of the thermal bubbles in accordance with the current change was observed in the 77 K and 65 K LN2. According to the temperature of liquid nitrogen, bubbles were generated differently. The round shape of the bubble is occurred in 77 K LN2. But the layer shape of bubble is occurred in 65 K LN2. When the bubbles present, the dielectric strength of liquid nitrogen is low. However, the breakdown patterns were different according to the electrode arrangement. AC breakdown voltage(BDV) was lower than the DC BDV due to the influence of bubbles. Therefore, the design of a high-voltage superconducting equipments should consider the bubbles.