• Title/Summary/Keyword: Bridge deck ends

Search Result 18, Processing Time 0.029 seconds

Investigation of serviceability of bridge deck ends on concrete slab track-installed bridges considering track-bridge interaction (궤도-교량 상호작용을 고려한 콘크리트 슬래브궤도 부설 교량의 단부 사용성 검토)

  • Jang, Seung-Yup;Yang, Sin-Chu;Kim, Jong-Tae
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1875-1881
    • /
    • 2007
  • Deformations of bridge deck ends on abutments or on transition between bridge decks can cause extreme deformations on track. Especially, since slab track is fixed onto the bridge deck slab on concrete slab track-installed bridges, deformations of bridge deck ends directly affect the track behavior, and thus these interactions can bring about the premature failure of rail fastenings or other deteriorations to lower the serviceability. In this study, a foreign standard to evaluate forces on track components caused by the track-bridge interactions and the serviceability of bridge deck ends is investigated, and for the real bridges, the serviceability of bridge deck ends according to several parameters of bridge and track is analyzed. It is found that arrangements and spring coefficients of bridge bearings, as well as distance between bridge bearing and last rail support, support spacings, rail support spring coefficient, are very important parameters.

  • PDF

Behavior of Fastening system of HSR bridge ends deck on Slab Track installed Bridge (슬래브궤도가 부설된 고속철도 교량단부 체결장치의 거동)

  • Chun, Dae-Sung;Choi, Jung-Youl;An, Hea-Young;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1637-1646
    • /
    • 2008
  • Deformations of bridge deck ends on abutment can cause extreme deformations on track. Especially, since slab track was fixed onto the bridge deck slab on concrete slab track installed bridges, deformations of bridge deck ends directly affect the slab track behavior, and thus these interactions can bring about the premature failure of rail fastenings or other deteriorations to lower the serviceability. In this study, a foreign standard to evaluate forces on track components caused by the track-bridge interactions and the behavior of bridge deck ends was investigated and for real scale bridges. It was found that rail support spring coefficients, as well as toe loads, support spacing were very important parameters.

  • PDF

A Parametric Study on the Serviceability of Concrete Slab Track on Railway Bridges (철도교 콘크리트 슬래브궤도의 사용성에 관한 매개변수 영향 연구)

  • Park, Hong-Kee;Jang, Seung-Yup;Yang, Sin-Chu;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.95-103
    • /
    • 2009
  • Deformations of bridge deck ends on abutments and piers bring about severe problems in track geometry and require maintenance work. In case of concrete slab track, more severe deformation and additional forces on rail and rail supports can be induced by bridge deck deformation, which affect the serviceability of track structure since concrete slab track is much stiffer than ballasted track and the behavior of track structure is integrated with that of bridge deck. In this study, the design variables affecting the serviceability of track structure are selected and the influence level is estimated by a parametric study. As a result, it is found that continuous span is advantageous than simply supported span and the stiffness of bridge bearing and rail fastener as well as the distance between last rail support and bridge bearing are most important parameters.

Track Longitudinal Irregularities at Bridge Deck Expansion Joint with ZLR(Zero Longitudinal Restraint) (활동체결장치가 설치된 교량상판 신축이음부에서의 궤도고저틀림에 미치는 영향)

  • Eom, Jong-Woo;Kim, Si-Chul;Kim, In-Jae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1093-1098
    • /
    • 2007
  • In designing the high-speed railroad track, it is important to utilize appropriate track components to maintain uniform stiffness and ensure track alignment within the tolerance set for that system. In this regard, continuous welded rails (CWRs) were introduced to the Korean railways. Yet the installation of CWRs can result in an adverse impact due to the track/structure interaction on bridge sections yielding variations in the stiffness at the expansion joints. It may also impose additional axial force, generate excessive stress or deflection on track, and loosen the ballast at the ends as a bridge deck contracts or expands owing to a thermally-induced dynamic response. The risk is even greater in a long bridge deck, resulting in track longitudinal irregularities, deteriorating passenger's comfort, and increasing maintenance efforts. This study evaluates the performance of ZLR and their impact on track longitudinal irregularities through the track measuring results on a test section installed the ZLR in order to minimize the thermally-induced responses and the maintenance efforts for the high speed railway bridges.

  • PDF

Experimental Study on Applying a Transition Track System to Improve Track Serviceability in Railway Bridge Deck Ends (철도교량 단부 궤도의 사용성 향상을 위한 횡단궤도시스템 적용에 관한 실험적 연구)

  • Lim, Jongil;Song, Sunok;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.207-216
    • /
    • 2013
  • The components of concrete track (rail and rail fastening system) in railway bridge deck ends are damaged and deteriorated by track-bridge interaction forces such as uplift forces and compression forces owing to their structural flexural characteristics (bridge end rotation). This had led to demand for alternatives to improve structural safety and serviceability. In this study, the authors aim to develop a transition track to enhance the long term workability and durability of concrete track components in railway bridge deck ends and thereby improve the performance of concrete track. A time-history analysis and a three-dimensional finite element method analysis were performed to consider the train speed and the effect of multiple train loads and the results were compared with the performance requirements and German standard for transition track. Furthermore, two specimens, a normal concrete track and a transition track, were fabricated to evaluate the effects of application of the developed transition track, and static tests were conducted. From the results, the track-bridge interaction force acting on the track components (rail displacement, rail stress, and clip stress) of the railway bridge deck end were significantly reduced with use of the developed transition track compared with the non-transition track specimen.

Application of FRP-Concrete Composite Deck to Cable Stayed Bridge (FRP-콘크리트 합성 바닥판의 사장교 적용)

  • Cho, Keun-Hee;Park, Sung-Yong;Kim, Sung-Tae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.217-220
    • /
    • 2008
  • A modified FRP-concrete composite deck applicable to cable stayed bridge with long girder-to-girder span is proposed, and its design and economical efficiency are presented. The existing FRP-concrete composite deck has low section stiffness due to adoption of GFRP panel with low elastic modulus, which arrives at difficulty in meet of serviceability limit such as deck deflection. So a new-type FRP-concrete composite deck, named precast FRP-concrete deck, is developed by extensioning concrete at the both ends of FRP-concrete composite deck, which brings the effect of reduction of net span length of deck. Compared to the existing FRP-concrete composite deck this modified deck has the advantage of increasing span length but slightly increases self weight. For this type of deck the section optimization is carried out for the cases of simply supported on girder and composite to girder. The optimized deck was applied to cable stayed bridge with a center span length of 540m, and as a result it is verified that PFC deck can be applied efficiently to cable stayed bridge due to reduction of quantity of upper structure.

  • PDF

Experimental Study on Characteristics of Deformation for Concrete Track on Railway Bridge Deck End induced by Bridge End Rotation (철도교량 단부 회전에 따른 콘크리트 궤도의 변형특성에 관한 실험적 연구)

  • Lim, Jongil;Song, Sunok;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.217-225
    • /
    • 2013
  • In this study, by considering the rail fastening support distance and the distance between the bridge and the abutment, the behavior of concrete track installed on a railway bridge end deck and the bridge end rotation were analyzed. In order to analyze the track-bridge interaction, bridge and abutment specimens with concrete track structures were designed and used in laboratory testing. At a constant fastening support distance, an increase in the bridge end rotation caused an increase in the displacement of the rail. Therefore, the displacement of the rail directly affects the rail and clip stress. Further, it is inferred that the results of multiple regression analysis obtained using measured data such as angle of bridge end rotation and fastening support distance can be used to predict the track-bridge interaction forces acting on concrete track installed on railway bridge deck ends.

Evaluation of the Structural Behavior Characteristics and Long Term Durability for Transition Track Systems in Railway Bridge Deck Ends (철도교량 단부 전환부 궤도시스템의 구조적 거동특성 및 장기 내구성능 분석)

  • Lee, Kwangdo;Jeong, Incheol;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.260-269
    • /
    • 2014
  • Transition tracks are an alternative for enhancing the long-term serviceability and durability of concrete track components in railway bridges. The goal of this paper is to investigate the structural behavior for transition track systems of railway bridge deck ends. In this study, the structural behavior of transition tracks such as the variations in static, dynamic, and fatigue behaviors and dynamic properties (natural frequency and damping ratio) are assessed and compared through performing loading tests and finite element analyses using actual vehicle impact loadings. As a result, it is found that the structural behavior of the transition track system is expected to satisfy the actual vehicle impact loading, and the variation in the neutral axis and dynamic characteristics are not affected by the fatigue loading. Therefore, it is inferred that the structural capacity and long-term durability of the transition track system is proven.

Correlation Analysis between Damage of Expansion Joints and Response of Deck in RC Slab Bridges (RC 슬래브교의 신축이음 손상과 바닥판 응답과의 상관관계 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Park, Ki-Tae;Jung, Kyu-San;Kim, Yu-Hee;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.245-253
    • /
    • 2021
  • RC slab bridges account for the largest portion of deteriorated bridges in Korea. However, most RC slabs are not included in the first and second classes of bridges, which are subject to bridge safety management and maintenance. The highest damaged components in highway bridges are the subsidiary facilities including expansion joints and bearings. In particular, leakage through expansion joints causes deterioration and cracks of concrete and exposure of reinforced bars. Therefore, this study analyzed the effect of adhesion damage at expansion joints on the response of the deck in RC slab bridges. When the spacing between the expansion joints at both ends was closely adhered, cracks occurred in the concrete at both ends of the deck due to the resistance rigidity at the expansion joints. Based on the response results, the correlation analysis between displacements in the longitudinal direction of the expansion joint and concrete stress at both ends of the deck for each damage scenario was performed to investigate the effect of the occurrence of damage on the bridge behavior. When expansion joint devices at both sides were damaged, the correlation between displacement and stress showed a low correlation of 0.18 when the vehicles proceeded along all the lanes. Compared with those in the intact state, the deflections of the deck in the damaged case at both sides showed a low correlation of 0.34 to 0.53 while the vehicle passed and 0.17 to 0.43 after the vehicle passed. This means that the occurrence of cracks in the ends of concrete changed the behavior of the deck. Therefore, data-deriven damage detection could be developed to manage the damage to expansion joints that cause damage and deterioration of the deck.

Influence of Rail Supporting Spacing of Railway Bridge Deck Ends on Bridge-Track Interaction Forces (교량-궤도 작용력에 대한 교량 단부에서의 레일지지점간격의 영향)

  • Choi, Jun-Hyeok
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.245-250
    • /
    • 2014
  • This paper, as a study for the serviceability design of railway bridges with concrete track, presents the effects of design parameters of tracks and bridges on the forces acting on the rail supports of the track. To calculate the forces acting on the track, an unequal spacing discrete supported model with different spacing of rail supports was induced. Design parameters are the rail support spacing of expansion joints above abutments or piers of bridges, the distance from the support of a girder to the last rail support on the end of the girder, and the number of additional rail supports. The causes of the displacement of track are axial force, unit vertical displacement, and unit rotation. From the analysis, the maximum compressive force and the maximum uplifting force acting on the rail supports were determined and the effects of the rail support spacing on the forces acting on the track were presented.