• Title/Summary/Keyword: Bridges

Search Result 4,159, Processing Time 0.024 seconds

A Study on the Safety of Highway Bridges by the Primary Capacity of Load (기본내하력에 의한 도로교의 안전성 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.122-126
    • /
    • 1996
  • In this thesis, the field test results of fifty-one highway bridges were analyzed in order to Investigate the primary capacity of load of highway bridges. From this study, it was known that primary capacity of load are decreased with the serviced years, and those are small in T-beam bridges rather than I-beam bridges. And the average primary capacity of load of highway bridges is seemd about 15. 5ton in T-beam bridges and in I-beam bridges about 19.7ton.

  • PDF

Longitudinal Displacement Analysis for Express Railway PSC Box-Girder Bridges (고속철도 PSC 박스거더의 종방향 신축변위 장기거동분석)

  • Yim Myoung-Jae;Choi Il-Yoon;Lee Jun S.;Lee Hyun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1102-1107
    • /
    • 2004
  • High-speed railway bridges subject to effect of statical loads by temperature change as well as dynamic loads by interaction between vehicle load which run specially fast and behavior of bridges, If suitable longitudinal expansion by temperature change of bridge does not happened, it can cause unhealthy condition for the parts of bridges as well as can generate addition stress to bridges, For these reason, Analysis and Estimation of data about behavior of bridges occupies important factor in that estimate the remaining life of bridges and select the maintenance, repair and retrofit. In this paper, Analysis for the long-term behavior of bridges using Longitudinal displacement and Temperature data that is actuality measured data to the bridges of Seoul-Busan high speed railroad test section has been made.

  • PDF

Dynamic Behavior of KTX Bridges Using Field Test Data (현장계측자료를 이용한 고속철도교량의 동적거동특성)

  • Yim Myoung Jae;Choi Il Yoon;Lee Jun S;Lee Hyun Suk
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.563-568
    • /
    • 2003
  • High-speed railway bridges subject to effect of dynamic loads by interaction between vehicle load which run specially fast and behavior of bridges. Such dynamic load effects result in fluctuations and fatigues to each elements as well as whole conduct of bridges. and is influenced in life of bridges. For these reason. Analysis and estimation of data about dynamic behavior of bridges occupies important factor in that estimate the remaining life of bridges and select the maintenance. repair and retrofit. In this paper. Analysis for the dynamic behavior of bridges using displacement and acceleration data that is actuality measure data to the bridges of Seoul-Susan high speed railroad test section has been made.

  • PDF

Appliance of Slab tracks on the Prestressed Concrete Bridges (슬래브궤도의 콘크리트교량 적용성 검토)

  • Kim, Nam-Hoon;Lim, Young-Su;Shin, Yong-Joon
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1037-1043
    • /
    • 2007
  • The railroad systems with the ballast tracks have been widely used for a long time. But recently, the use of the slab track is being increased gradually with a technical developments. So, this paper deals with the appliance of the slab tracks on the railroad bridges. Firstly, review the design criteria of the railroad bridges related to the slab tracks for the stability and serviceability, based on DIN and EURO code. Then, perform the analysis of the railroad prestressed concrete bridges, and check whether the results of the analysis satisfy the design criteria. Finally, find the construction condition of bridges that all the design criteria are satisfied. As a result, to maintain the stability and serviceability of the bridges, bridges must have some restrictions, including a time of installation of the slab tracks. So, the construction schedule for the erection of the bridges will be carefully considered in case of the concrete railroad bridges with the slab tracks.

  • PDF

3D simulation of railway bridges for estimating fundamental frequency using geometrical and mechanical properties

  • Moazam, Adel Mahmoudi;Hasani, Nemat;Yazdani, Mahdi
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.257-271
    • /
    • 2017
  • There are many plain concrete arch bridges in Iran that have been used as railway bridges for more than seventy years. Owe to the fact that these bridges have not been designed seismically, and even may be loaded under high-speed trains, evaluation of fundamental frequencies of the bridges against earthquake and high-speed train vibrations is necessary for considering dynamics effects. To evaluate complex behavior of these bridges, results of field tests are useful. Since it is not possible to perform field tests for all arch bridges, these structures should be simulated correctly by computers for structural assessment. Several parameters are employed to describe the bridges, such as number of spans, length of spans, geometrical and material properties. In this study, results of field tests are used for modal analysis and adapted for 64 three dimensional finite element models with various physical parameters. Computer simulations show length of spans has important effect on fundamental frequencies of plain concrete arch bridge and modal deformations of bridges is in longitudinal and transverse directions. Also, these results demonstrate that fundamental frequencies of bridges decrease after increasing span length and number of spans. Plus, some relations based in the number of spans (n) and span length (l) are proposed for calculation of fundamental frequencies of plain concrete arch bridge.

Fragility curves for the typical multi-span simply supported bridges in northern Pakistan

  • Waseem, Muhammad;Spacone, Enrico
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.213-223
    • /
    • 2017
  • Bridges are lifeline and integral components of transportation system that are susceptible to seismic actions, their vulnerability assessment is essential for seismic risk assessment and mitigation. The vulnerability assessment of bridges common in Pakistan is very important as it is seismically very active region and the available code for the seismic design of bridges is obsolete. This research presents seismic vulnerability assessment of three real case simply supported multi-span reinforced concrete bridges commonly found in northern Pakistan, having one, two and three bents with circular piers. The vulnerability assessment is carried through the non-linear dynamic time history analyses for the derivation of fragility curves. Finite element based numerical models of the bridges were developed in MIDAS CIVIL (2015) and analyzed through with non-linear dynamic and incremental dynamic analyses, using a suite of bridge-specific natural spectrum compatible ground motion records. Seismic responses of shear key, bearing pad, expansion joint and pier components of each bridges were recorded during analysis and retrieved for performance based analysis. Fragility curves were developed for the bearing pads, shear key, expansion joint and pier of the bridges that first reach ultimate limit state. Dynamic analysis and the derived fragility curves show that ultimate limit state of bearing pads, shear keys and expansion joints of the bridges exceed first, followed by the piers ultimate limit state for all the three bridges. Mean collapse capacities computed for all the components indicated that bearing pads, expansion joints, and shear keys exceed the ultimate limit state at lowest seismic intensities.

Influence of some relevant parameters in the seismic vulnerability of RC bridges

  • Olmos, B.A.;Jara, J.M.;Jara, M.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.365-381
    • /
    • 2012
  • Recent earthquakes have damaged some bridges located on the Pacific Coast of Mexico; these bridges have been retrofitted or rebuilt. Based on the fact that the Pacific Coast is a highly active seismic zone where most of the strong earthquakes in the country occur, one fertile and important area of research is the study of the vulnerability of both new and existent bridges located in this area that can be subjected to strong earthquakes. This work is focused on estimating the contribution of some parameters identified to have major influence on the seismic vulnerability of reinforced concrete bridges. Ten models of typical reinforced concrete (RC) bridges, and two existing bridges located close to the Pacific Coast of Mexico are considered. The group of structures selected for the study is based on two span bridges, two pier heights and two substructure types. The bridges were designed according to recent codes in Mexico. For the vulnerability study, the capacity of the structure was evaluated based on the FEMA recommendations. On the other hand, the demand was evaluated using a group of more than one hundred accelerograms recorded close to the subduction zone of Mexico. The results show that the two existent bridges analyzed show similar trends of behavior of the group of bridge models studied. In spite of the contribution that traditional variables (height and substructure type) had to the bridge seismic response, the bridge length was also found to be one of the parameters that most contributed to the seismic vulnerability of these RC medium-length bridges.

An Analysis of Night and Day Images of Bridges Over the Han River in Seoul (서울시 한강교량 주야간 경관이미지 분석)

  • 서주환;최현상;차정우
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.5
    • /
    • pp.31-38
    • /
    • 2002
  • This study attempts to grasp the correlation between the image of bridges and bridge landscapes with their surroundings during day and nighttime viewing, and to understand the psychological influence of nighttime lighting through quantitative analysis. In addition, it presents a design to construct bridges in order to increase viewers enjoyment of bridge landscapes lit at night. To attain this objective and contrive generalization of the results, this paper selects 8 of 9 bridges with lightings in Seoul and excludes bridges constructed by 2004. The criteria for selection of the viewpoints is that each must be within easy reach of bridges, and must allow viewers to recognize surrounding landscape details both in daylight and at night. As well, the pictures of bridges are taken in the terraced land by the riverside. The study selects 16 pictures, judged to be of similar quality and angle, to establish the conditions of luminosity, color, definition and angle. The results are as follows. First, viewers preferences of night landscapes are higher than day landscapes due to the effect of lighting. By day, viewers preferred bridges with various structures such as cable-stayed bridges and arch bridges more than simple bridges like girder bridges. Viewers also indicated preferences for lightings which feature a unique color and which are harmonized with their surroundings. Second, components representing the images of bridge landscape are classified into three types, 'beauty', 'system' and 'agreeableness'. Third, the factors affecting preference are the shape of bridge by day and lighting at night. Esthetic appeal is the most important factor in visual preference so each bridges own esthetic appeal and surroundings must be considered. Thus, a complete plan must be created which considers safety, beauty and the local surroundings. In addition, when the lighting of a bridge is selected, the design of the bridge landscape must consider various lighting schemes to harmonize the upper and lower parts of the structure. At this point, the study reveals the basic elements of bridge planning in order to increase appreciation of the bridge landscape.

Investigation of Live Load Deflection Limit for Steel Cable Stayed and Suspension Bridges

  • Park, Ki-Jung;Kim, Do-Young;Hwang, Eui-Seung
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1252-1264
    • /
    • 2018
  • Long span bridges such as steel cable stayed and suspension bridges are usually more flexible than short to medium span bridges and expected to have large deformations. Deflections due to live load for long span bridges are important since it controls the overall heights of the bridge for securing the clearance under the bridge and serviceability for securing the comfort of passengers or pedestrians. In case of sea-crossing bridges, the clearance of bridges is determined considering the height of the ship master from the surface of the water, the trim of the ship, the psychological free space, the tide height, and live load deflection. In the design of bridges, live load deflection is limited to a certain value to minimize the vibrations. However, there are not much studies that consider the live load deflection and its effects for long span bridges. The purpose of this study is to investigate the suitability of live load deflection limit and its actual effects on serviceability of bridges for steel cable-stayed and suspension bridges. Analytical study is performed to calculate the natural frequencies and deflections by design live load. Results are compared with various design limits and related studies by Barker et al. (2011) and Saadeghvaziri et al. (2012). Two long span bridges are selected for the case study, Yi Sun-Sin grand bridge (suspension bridge, main span length = 1545 m) and Young-Hung grand bridge (cable stayed bridge, main span length = 240 m). Long-term measured deflection data by GNSS system are collected from Yi Sun-Sin grand bridge and compared with the theoretical values. Probability of exceedance against various deflection limits are calculated from probability distribution of 10-min maximum deflection. The results of the study on the limitation of live load deflection are expected to be useful reference for the design, the proper planning and deflection review of the long span bridges around the world.

Empirical seismic fragility rapid prediction probability model of regional group reinforced concrete girder bridges

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.609-623
    • /
    • 2022
  • To study the empirical seismic fragility of a reinforced concrete girder bridge, based on the theory of numerical analysis and probability modelling, a regression fragility method of a rapid fragility prediction model (Gaussian first-order regression probability model) considering empirical seismic damage is proposed. A total of 1,069 reinforced concrete girder bridges of 22 highways were used to verify the model, and the vulnerability function, plane, surface and curve model of reinforced concrete girder bridges (simple supported girder bridges and continuous girder bridges) considering the number of samples in multiple intensity regions were established. The new empirical seismic damage probability matrix and curve models of observation frequency and damage exceeding probability are developed in multiple intensity regions. A comparative vulnerability analysis between simple supported girder bridges and continuous girder bridges is provided. Depending on the theory of the regional mean seismic damage index matrix model, the empirical seismic damage prediction probability matrix is embedded in the multidimensional mean seismic damage index matrix model, and the regional rapid prediction matrix and curve of reinforced concrete girder bridges, simple supported girder bridges and continuous girder bridges in multiple intensity regions based on mean seismic damage index parameters are developed. The established multidimensional group bridge vulnerability model can be used to quantify and predict the fragility of bridges in multiple intensity regions and the fragility assessment of regional group reinforced concrete girder bridges in the future.