• Title/Summary/Keyword: Bsec

Search Result 17, Processing Time 0.032 seconds

BICYCLIC BSEC OF BLOCK SIZE 3

  • Cho, Chung-Je
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.603-610
    • /
    • 2005
  • A k-sized balanced sampling plan excluding contiguous units of order v and index denoted by $BSEC(v,\;k,\;{\lambda})$, is said to be bicyclic if it admits an automorphism consisting of two disjoint cycles of length ~. In this paper, we obtain a necessary and sufficient condition for the existence of bicyclic BSEC(v, 3, 2)s.

The Characteristics of Performance and Exhaust Emission on Simultaneous Application with Biodiesel Fuel and Oxygen Component in a C.I. Engine (압축착화기관에서 바이오디젤유 및 함산소성분 동시적용시 성능과 배기배출물 특성)

  • Choi, S.H.;Oh, Y.T.;Lee, D.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions from the diesel engines are recognized as main cause which has a great influence on environment. In this study, the potential of biodiesel fuel and oxygenated fuel(ethylene glycol mono-n-butyl ether; EGBE) was investigated as an effective method of decreasing the smoke emission. The smoke emission of blending fuel(EGBE 0~20 vol-%) was reduced in comparison with diesel fuel and it was reduced approximately 64% at 2000 rpm, full load in the 20% of blending rate. On the contrary NOx emissions from biodiesel fuel and EGBE blended fuel were increased compared with diesel fuel. Torque and brake specific energy consumption(BSEC) didn't have large differences.

Combustion Characteristics and Exhaust Emissions in Spark-ignition Engine Using Gasoline-ammonia (가솔린 엔진에서 가솔린-암모니아 혼합 연료의 연소 및 배기 특성)

  • Ryu, Kyunghyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.155-165
    • /
    • 2013
  • The effect of gaseous ammonia direct injection on the engine performance and exhaust emissions in gasoline-ammonia dual fueled spark-ignition engine was investigated in this study. Results show that based on the gasoline contribution engine power increases as the ammonia injection timing and duration is advanced and increased, respectively. However, as the initial amount of gasoline is increased the maximum power output contribution from ammonia is reduced. For gasoline-ammonia, the appropriate injection timing is found to range from 320 BTDC at low loads to 370 BTDC at high loads and the peak pressures are slightly lower than that for gasoline due to the slow flame speed of ammonia, resulting in the reduction of combustion efficiency. The brake specific energy consumption (BSEC) for gasoline-ammonia has little difference compared to the BSEC for gasoline only. Ammonia direct injection causes slight reduction of $CO_2$ and CO for all presented loads but significantly increases HC due to the low combustion efficiency of ammonia. Also, ammonia direct injection results in both increased ammonia and NOx in the exhaust due to formation of fuel NOx and ammonia slip.

An Experimental Study on NOX Reduction in a Diesel Engine with Cold EGR (Cold EGR 장착 디젤엔진에서의 NOx 저감에 관한 실험적 연구)

  • Chauhana, Bhupendra Singh;Kumar, Naveen;Jun, Yong-Du
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.769-772
    • /
    • 2010
  • The objective of the current research work is to investigate the usage of biodiesel combined with the use of EGR in order to reduce the emission of all regulated pollutants from diesel engines. A single cylinder, air cooled, constant speed direct injection diesel engine was used for the experimental work and a cold EGR system was developed and fitted to the engine. Concentrations of HCs, NOx, and CO from the exhaust gas along with the smoke opacity were measured. Engine performance parameters such as the brake thermal efficiency (BTE) and the brake specific energy consumption (BSEC) were also calculated from the measured data. The results from the present investigation suggest that 25-30% EGR rate could give excellent NOx reduction without any significance penalty on smoke opacity or BSEC under the engine load of up to 40%. Under the full load condition, 15% EGR rate was found to be an option while higher EGR rate resulted in inferior performance and heavy smoke.

  • PDF

A Study on Characteristics for Emission Characteristics and Durability with Biodiesel Fuel(20%) in a Commercial Common Rail Type Diesel Engine (상용 커먼레일 디젤기관에서 바이오디젤유(20%) 적용시 내구특성 및 배기배출물 특성 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.61-66
    • /
    • 2007
  • A CRDI diesel engine used to commercial vehicle was fueled with 20% biodiesel fuel(BDF 20) in excess of 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis, Also, BSEC with BDF 20 resulted in lower than with diesel fuel. Since the biodiesel fuel used in this study includes oxygen of about 11%, it could influence the combustion process strongly. So, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions without special increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions from using the BDF 20.

Effect of Fuel Injection Timing on the Performance and Exhaust Emissions in IDI Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 디젤기관에서 연료분사시기 변화에 따른 기관성능 및 배기배출물 특성)

  • 유경현;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 2004
  • Biodiesel fuel(BDF) which is easily produced from vegetable oils such as soybean oil and rice bran oil can be effectively used as an alternative fuel in diesel engine. However, BDF can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. To investigate the effects of injection timing on the characteristics of performance and emissions with BDF in IDI diesel engine, BDF derived from rice bran oil was considered in this study. The engine was operated at six different injection timings and six loads at a single engine speed of 2000rpm. When the injection timing was retarded, better results were obtained, which may confirm the advantage of BDF. The reduction of NOx and smoke was observed for a 2$^{\circ}$ retarded injection timing without any sacrifice of BSEC.

A novel controller for switching audio power amplifier with digital input (디지털 PWM 입력 D급 음향 증폭기를 위한 새로운 제어기법)

  • Park, Jong-Hu;Kim, C.G.;Cho, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.976-979
    • /
    • 2002
  • A new controller for switching audio power amplifier with digital PWM input is proposed- Bi-directional Saw-tooth Error Correction (BSEC). This control method for high quality switching amplifier is based on a pulsed edge correction approach using PWM audio signal input as a reference of power switching digital to analog converter. The proposed controller has excellent features such as wide error correction range and no limitation on the modulation index. The controller is implemented in the half-bridge class D amplifier and the performance is verified through hardware experiments. It delivers 100W into 4${\Omega}$ load with less than 0.2% of total harmonic distortion (THD) all over operating range and an maximum efficiency of 82%.

  • PDF

A Study on Performance Characteristics of the Diesel Engine using High Viscous Oils by blending Low Boiling Point Oxygenates (저비점 함산소물질 혼합에 의한 고점도유 사용 디젤기관의 성능특성 연구)

  • ;Noboru Miyamoto
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.44-51
    • /
    • 2003
  • By blending of various low boiling point oxygenated agents to lower grade fuels, significant improvements were simultaneously obtained in smoke, CO, PM, SOF and BSEC. Especially, our trends were remarkably obtained by retarding injection timing, by decreasing boiling point and increasing blending contents of additives in case of oxygenated agents rather than non-oxygenated agents. Also, it was revealed that when 20vo1.% DMM added to high viscosity fuels and injection timing was retarded, NOx-smoke trade off relationship was much better than that of ordinary diesel fuel. Thus, lower grade fuels with high viscosity could be expected to be used efficiently and cleanly in diesel operation by blending low boiling point oxygenates.

The Durability Characteristics for BDF 20% in a Common Rail Diesel Engine (커먼레일 디젤기관에서 BDF 20%에 대한 내구특성)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.32-37
    • /
    • 2011
  • Biodiesel fuel is already remarkable alternative fuel in many countries. So, many studies are performed on the environmental or economic effects as well as the characteristics of diesel engine fueled biodiesel in combustion and emission. In this study, an CRDI diesel engine used to commercial vehicle was fueled with diesel fuel and 20% biodiesel blended fuel (BDF 20%) with city mode in excess of 300 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. To check the engine parts (valve and injector), the engine was inspected after test. It was concluded that there were no unusual deteriorations of the engine, or any unusual changes in engine power and exhaust emissions in spite of operation of 300 hours with BDF 20%.

Effect of Air-fuel Ratio on Combustion and Emission Characteristics in a Spark Ignition Engine Fueled with Bio-ethanol (공연비 변화가 바이오에탄올 연료 스파크 점화기관의 연소 및 배출물 특성에 미치는 영향)

  • Kim, Dae-Sung;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this paper is to investigate the effect of air-fuel ratio on the combustion and emissions characteristics of spark ignition (SI) gasoline engine fueled with bio-ethanol. A 1.6L SI engine with 4 cylinders was tested on EC dynamometer. In addition, lambda sensor and lambda meter were connected with universal ECU to control the lambda value which is varied from 0.7 to 1.3. The engine performance and combustion characteristics of bio-ethanol fuel were compared to those obtained by pure gasoline. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen ($NO_X$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque and cylinder pressure of bio-ethanol fuel were slightly higher than those of gasoline fuel. Brake specific fuel consumption (BSFC) of bio-ethanol was increased while brake specific energy consumption (BSEC) was decreased. The exhaust emissions of bio-ethanol fuel were lower than those of gasoline fuel under overall experimental conditions. However, the specific emission characteristics of the engine with bio-ethanol fuel were influenced by air-fuel ratio.