• Title/Summary/Keyword: Buckling test

Search Result 498, Processing Time 0.023 seconds

Test and Analysis of Triaxially Braided Composite Circular Arch under Three-Point Bending

  • Nega, Biruk F.;Woo, Kyeongsik;Lee, Hansol
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.249-257
    • /
    • 2019
  • In this paper, the buckling behavior of triaxially braided circular arch with monosymmetric open section subjected to three-point bending was studied experimentally and numerically. First, test specimens were manufactured using vacuum assisted resin transfer molding (VARTM). Then the specimen was tested under three-point bending to determine the ultimate buckling strength. Before performing the numerical analysis, effective material properties of the braided composite were obtained through micro-meso scale analysis virtual testing validated with available test results. Then linear buckling analysis and geometrically non-linear post buckling analysis, established to simulate the test setup, were performed to study the buckling behavior of the composite frame. Analysis results were compared with experimentally obtained ones for verification. The effect of manufacturing defects of tow misalignment, irregular surface and resin rich region, and uncertainties during test setup were studied using numerical models. From the numerical analyses performed it was observed that both manufacturing defect and uncertainties had effect on the buckling behavior and strength.

Buckling Analysis of Laminated Composite Plates (복합적층평판의 좌굴해석)

  • 원종진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.23-28
    • /
    • 1998
  • In this paper, the experimental and numerical results of buckling loads for laminated composite plates are compared. Using boundary conditions of buckling test are all fixed supports. Experiments were conducted for plates with fiber angles $ heta$=30$^{\circ}$, 45$^{\circ}$,60$^{\circ}$ and aspect ratio a/b=0.8. Experimental results were obtained from load-deflection curves of buckling test. Numerical methods were presented to evaluate buckling loads, using structural analysis results from ANSYS.

  • PDF

Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure

  • Do-Young Kim;Chang-Hoon Sim;Jae-Sang Park;Joon-Tae Yoo;Young-Ha Yoon;Keejoo Lee
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.419-429
    • /
    • 2023
  • This study conducts numerical analyses of a thin-walled composite cylinder under axial compression and internal pressure of 10 kPa. Numerical vibration correlation technique and nonlinear postbuckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach and measured imperfection data are used to represent the geometric initial imperfection of thin-walled composite cylinder. The buckling knockdown factors are derived using present initial imperfection and analysis methods under axial compression without and with the internal pressure. Furthermore, the buckling knockdown factors are compared with the buckling test and computation time are calculated. In this study, derived buckling knockdown factors in present study have difference within 10% as compared with the buckling test. It is shown that nonlinear postbuckling analysis can derive relatively accurate buckling knockdown factor of present thin-walled cylinders, however, numerical vibration correlation technique derives reasonable buckling knockdown factors compared with buckling test. Therefore, this study shows that numerical vibration correlation technique can also be considered as an effective numerical method with 21~91% reduced computation time than nonlinear postbuckling analysis for the derivation of buckling knockdown factors of present composite cylinders.

Nonlinear Dynamic Lateral Buckling Behavior of a Grid Structures (격자 구조물의 비선형 동적 측면 충격해석)

  • Yoon, Kyung-Ho;Song, Kee-Nam;Kim, Hong-Bae
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.254-260
    • /
    • 2000
  • The spacer grid is one of the main structural components in fuel assembly, which supports the fuel rods, guides cooling water, and protects the fuel assembly from the external impact load such as earthquakes. The nonlinear dynamic impact analysis is conducted by using the finite element code ABAQUS/Explicit. Boundary condition for dynamic analysis is well applied to the test condition. Simulation results also similarly predict the local buckling phenomena. In addition to the buckling parameter, the local buckling cause is examined by both simulation and test method. It is found to correspond well with the test results. Impact tests are also carried out for some specimens of the spacer grid in order to compare the results between the test and the simulation. This test is accomplished by a free fall dummy weight onto the specimen. From this test, only the uppermost and lowermost layers of the multi-cell are buckled, which implies the local buckling at the weakest point of the grid structure.

  • PDF

A Study on the Strength Comparison of Steel Pipe Support using the Structural Analysis Program (구조해석에 의한 파이프서포트의 내력비교에 관한 연구)

  • Paik, Shin-Won;Park, Jong-Keun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.67-71
    • /
    • 2008
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Slab formwork consists of sheathing, stringer, hanger and shore. In construction site, pipe supports are usually used as shores which are consisted of the slab formwork. In this study, compressive strength of 80 pipe supports was measured by knife edge test and plate test. Buckling load of pipe supports was analyzed by structural analysis program(MlDAS). Theoretical buckling load with/without initial deformation was got by theoretical analysis. According to these results, buckling load which was analyzed by structural analysis program(MlDAS) was larger than compressive strength of knife edge test and plate test. Theoretical buckling load without initial deformation was larger than compressive strength of knife edge test and plate test. But Theoretical buckling load with initial deformation was lower than compressive strength of knife edge test and plate test. Initial deformation equation for test method according to the pipe support length was suggested. Therefore, the present study results will be used to design the slab formwork safely.

Nonlinear Dynamic Buckling Behavior of a Partial Spacer Grid Assembly

  • Yoon, Kyung-Ho;Kang, Heung-Seok;Kim, Hyung-Kyu;Song, Kee-Nam;Jung, Yeon-Ho
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.93-101
    • /
    • 2001
  • The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. Therefore, the mechanical and structural properties of the spacer grids must be extensively examined while designing them. In this paper, a numerical method for predicting the buckling strength of spacer grids is presented. Numerical analyses on the buckling behavior of the spacer grids are performed for a various array of sizes of the grids considering that the spacer grid is an assembled structure with thin-walled plates and imposing proper boundary conditions by nonlinear dynamic finite element method using ABAQUS/Explicit. Buckling tests on several numbers of specimens of the spacer grid were also carried out in order to compare the results between the test and the simulation result. The drop test is accomplished by dropping a carriage on the specimen at a pre-determined position. From this test, the specimens are buckled only at the uppermost and the lowermost layer among the multi-cells, which is similar to the local buckling at the weakest point of the grid structure. The simulated results also similarly predicted the local buckling phenomena and were found to give good correspondence with the experimental values for the thin-walled grid structures.

  • PDF

Analysis of Hysteresis Characteristics of Buckling Restrained Brace According to Lateral buckling prevention Method (횡좌굴 방지방식에 따른 비좌굴가새의 이력특성 분석)

  • Kim, Yu-Seong;Lee, Joon-Ho;Kim, Gee-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2023
  • Buckling Restrained Braces can not only express the strength considered at the time of design, but also reduce the seismic load by energy dissipation according to the plastic behavior after yield deformation of the steel core. The physical characteristics and damping effect may be different according to the buckling prevention method of the steel core by the lateral restraint element. Accordingly, in this study, To compare hysteresis characteristics, Specimen(BRB-C) filled with mortar, specimen(BRB-R) combined with a buckling restraint ring and Specimen(BRB-EP) filled with engineering plastics was fabricated, and a cyclic loading test was performed. As a result of the cyclic loading test, the maximum compressive strength, cumulative energy dissipation and ductility of each test specimen was similar. But in case of the cumulative energy dissipation and ductility, BRB-C filled with the mortar specimen showed the lowest. This is considered to be because the gap between the steel core and the reinforcing material for plastic deformation was not uniformly formed by pouring mortar around the core part.

Buckling Test and Non-linear Analysis of Aluminium Isogrid Panel (알루미늄 lsogrid 패널의 좌굴시험 및 비선형 해석)

  • Yoo, Joon-Tae;Lee, Jong-Woong;Yoon, Jong-Hoon;Jang, Young-Soon;Yi, Yeong-Moo;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.35-40
    • /
    • 2005
  • There are many methods to reinforce the cylindrical structure for light weight design like skin-stringer and semi-monocoque. Isogrid is one of the reinforced structures to improve buckling load. Isogrid has many advantages for complex load case, internal pressure and concentrated load.In this paper, compressive buckling test and non-linear FE analysis of the isogrid panel are described. Diameter of panel is 2.4m and thickness of plate is 11.43mm. The angle which the panel accomplish is about 70 degrees and, its height is about 660mm. Local buckling, global buckling and variation of stiffness after local buckling were observed during buckling test of the panel. MSC/MARC is used for non-linear FE analysis. When analysis, initial imperfection of panel which occurred during plastic forming is considered. The results of analysis for buckling mode and buckling load have good agreements with test.

Nondestructive Buckling Load Prediction of Pressurized Unstiffened Metallic Cylinder Using Vibration Correlation Technique (Vibration Correlation Technique을 이용한 내부 압력을 받는 금속재 단순 원통 구조의 비파괴적 전역 좌굴 하중 예측)

  • Jeon, Min-Hyeok;Kong, Seung-Taek;Cho, Hyun-Jun;Kim, In-Gul;Park, Jae-Sang;Yoo, Joon-Tae;Yoon, Yeoung-Ha
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.75-82
    • /
    • 2022
  • Nondestructive method to predict buckling load for the propellant tank of launch vehicle should be evaluated. Vibration correlation technique can predict the global buckling load of unstiffened cylindrical structure with geometric initial imperfection using correlation of natural frequency and compressive load from compressive test below the buckling load. In this study, vibration and buckling tests of a thin metal unstiffened propellant tank model subjected to internal pressure and compressive loads were performed and the test results were used for VCT to predict global buckling load. For the vibration test of thin structure, non-contact excitation method using a speaker was used. The response was measured with piezoelectric polymer(PVDF) sensor. Prediction results of VCT were compared with the measured buckling load in the test and the nondestructive global buckling load prediction method was verified.

Experimental Study on The Bending Collapse Characteristics of Al Rectangular Tubes (알루미늄 사각관의 굽힘붕괴특성에 관한 실험적 고찰)

  • 강신유;김창수;정태은
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.265-272
    • /
    • 1997
  • In this paper the bending collapse characteristics of 60 series Al rectangular tubes were studied with a pure bending collapse test rig which could apply the pure bending moment, there occured three kinds of bending collapse modes - local buckling, delayed buckling, tensile failure - depending on the b/t(width/thickness) ratio and material properties. Experiment results are compared with the results of finite element method.

  • PDF