• Title/Summary/Keyword: Bugok area

Search Result 13, Processing Time 0.031 seconds

Assessment of geothermal potential in an area of sulfate-rich hot springs, Bugok, southern Korea

  • Park Seong-Sook;Yun Seong-Taek;Chae Gi-Tak;So Chil-Sup;Koh Yong-Kwon;Choi Hyeon-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.303-306
    • /
    • 2006
  • Using a variety of chemical geothermometers we estimate the temperature of a deep geothermal reservoir in relation to thermal groundwater in the Bugok area, southern Korea, in order to assess the potential use of geothermal energy in South Korea. Thermal water at Bugok has been exploited down to about 400 m below the land surface and shows the highest outflow temperatures (up to $78{\circ}C$) in South Korea. Based on the hydrochemical data and occurrence, groundwater in Bugok can be classified into three groups: $Na-SO_4$ type thermal groundwater (CTGW) occurring in the central part (about 0.24 $km^2$) $Ca-HCO_3$ type cold groundwater (SCGW) occurring in shallow peripheral parts of CTGW; and the intermediate type groundwater (STGW). CTGW waters are typical of thermal water in the area, because they have the highest outflow temperatures and contain very high concentrations of Na, K and $SiO_2$ due to the sufficient reaction with silicate minerals in deep reservoir. Their enriched $SO_4$ was likely formed by gypsum dissolution. The major ion composition of CTGW shows the general approach to a partial equilibrium state with rocks at depth. The application of various alkali ion geothermometers yields temperature estimates in the range of 88 to $198{\circ}C$ for the thermal reservoir. Multiple mineral equilibrium calculation indicates asimilar but narrower temperature range between about 100 and $155{\circ}C$. These temperature estimates are not significantly higher than the measured outflow temperatures for CTGW Considering the heat loss during the ascent- of thermal waters, this fact may suggest that a thermal reservoir in the study area is likely located at relatively shallow depths (possibly close to the depth of preexisting wells). Therefore, we suggest a high potential for geothermal energy development around the Bugok area in southern Korea.

  • PDF

Estimation of deep reservoir temperature of thermal groundwaters in Bugok and Magumsan areas, South Korea

  • Park, Seong-Sook;Yun, Seong-Taek;So, Chil-Sup
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.473-476
    • /
    • 2004
  • In this study, hydrochemical studies of thermal waters in the Bugok and Magumsan areas showing geothermal anomalies were carried, and the applicability of ion seothermometers and multiple mineral equilibrium approach was examined to estimate their potential deep reservoir temperatures. Typical thermal waters of the two areas are clearly grouped into two major types, according to water chemistry: Na-Cl type (group A) and Na-SO4 type (group D). Compared to group A, group B and C waters show some modifications in chemistry. Group E waters show the modified chemistry from group D. Geothermal waters from the two areas showed some different chemical characteristics. The thermal waters of group A and B in Magumsan area are typically neutral to alkaline (pH=6.7 to 8.1) and Cl-rich (up to 446.1 mg/L), while the waters of group D and E in Bugok area are alkaline (pH=7.6 to 10.0) and SO$_4$-rich (up to 188.0 mg/L). The group A (Na-Cl type) and group D (Na-SO$_4$ type) waters correspond to mature or partially immature water, whereas the other types are immature water. The genesis of geothermal waters are considered as follows: group A and B waters were formed by seawater infiltration into reservoir rocks along faults and fracture zones and possibly affected by fossil connate waters in lithologic units through which deep hot waters circulate; on the other hand, group D and E waters were formed by the oxidation of sulfide minerals (mainly pyrite) in surrounding sedimentary rocks and/or hydrothermal veins occurring along restricted fracture channels and were possibly affected by the input and subsequent oxidation of S-bearing gases (e.g. H2S) from deep thermal reservoir (probably, cooling pluton). The application of quartz, Na-K, K-Mg geothermometers to the chemistry of representative group A and D waters yielded a reasonable temperature estimate (99-147$^{\circ}C$ and 90-142$^{\circ}C$) for deep geothermal reservoir. Aqueous liquid-rich fluid inclusions in fracture calcites obtained from drillcores in Bugok area have an average homogenization temperature of 128$^{\circ}C$, which corresponds to the results from ion geothermometers. The multiple mineral equilibrium approach yielded a similar temperature estimate (105-135$^{\circ}C$ and 100-14$0^{\circ}C$). We consider that deep reservoir temperatures of thermal waters in the Magumsan and Bugok areas can be estimated by the chemistry of typical Na-Cl and Na-SO$_4$ type waters and possibly approach 105-135$^{\circ}C$ and 100-14$0^{\circ}C$.

  • PDF

An Analysis of Groundwater Flow at Bugok Area Using MODFLOW (MODFLOW 모형을 이용한 부곡온천지역 지하수 유동해석)

  • Chung, Sang-Ok;Lee, Young-Dae;Min, Byung-Hyung
    • Water for future
    • /
    • v.27 no.1
    • /
    • pp.79-88
    • /
    • 1994
  • This study was conducted to analyse groundwater flow in the Bugok hot spring area using the MODFLOW model which can simulate three dimensional groundwater flow both in confined and unconfined aquifers. Based on this study the following conclusions were obtained: 1) The hydraulic conductivity and the specific storage of the aquifer were 0.0135 m/day and 0.020, respectively, and the model-predicted groundwater elevation agreed well with the observed one. 2) Simulation results showed that the groundwater level declines at the end of the one-year simulation period when the annual recharge rate is small and the annual pumping rate high, which is the worst combination. Except that combination, the groundwater level does not decline at the end of one-year simulation period indication the pumping rates used were allowable. 3) The safe yield depends upon the magnitudes of the recharge and pumping rates. The pumping rate should not produce excess decline of groundwater level around April when the water level is the lowest in a year.

  • PDF

Geochemical Evolution and Deep Environment of the Geothermal Waters in the Bugok Area: Reconsideration on the Origin of Sulfate-type Geothermal Water (부곡 지열수의 심부환경과 지화학적 진화: 유황형 지열수의 생성과정 재해석)

  • 고용권;윤성택;김천수;배대석;박성숙
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.329-343
    • /
    • 2001
  • The deep environment and geochemical evolution of the Bugok geothennal waters, located in the Kyeongnam Province, was re-interpreted based on the hydrochemical and isotopic data published by Yun et al. (1998). The geothermal waters of the Bugok area is geochemically divided into three groups; Geothennal water I, II and III groups. Groups I and II are geochemically similar; high temperature (55.2-77.2$^{\circ}$C) and chemically belonging to Na-S04 types. However, pH and Eh values are a little different each other and Group II water is highly enriched in S04 compared to Group I water. Group III water, occurring from peripheral sites of the central part of the geothennal waters, shows temperature range of 29.3 to 47.0$^{\circ}$C and belongs to $Na-HCO_3-S0_4$ types. The deep environment and geochemical evolution of the Bugok geothennal waters, showing the diversity of geochemistry, can be interpreted as follows; I) Descending to great depth of meteoric waters that originated at high elevation and reacting with sediments and/or granites in depth. The $S0_4$ concentration of the waters has been increased by the dissolution of sulfate minerals in sediments. 2) During the continuous descending, the waters has met with the reduction environment, producing the $H_2S$ gas due to sulfate reduction. The waters has been heated up to 130$^{\circ}$C and the extent of water-rock reaction was increased. At this point, pH of waters are increased, S04 concentration decreased and calcite precipitated, therefore, the waters show the $Na-S0_4$ type. 3) Ascending of the geothennal waters along the flow path of fluids and mixing with less-deeply circulated waters. The $S0_4$ concentration is re-increased due to the oxidation of $H_2S$ gas and/or sulfide minerals in sediments. During continuous ascending, these geothennal waters are mixed with shallow groundwater.

  • PDF

Optimal Location of Best Management Practices for Storm Water Runoff Reduction (우수유출저감 시설의 최적위치 결정)

  • Jang, Su Hyung;Lee, Jiho;Yoo, Chulsang;Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.180-184
    • /
    • 2008
  • A distributed hydrologic model of an urban drainage area on Bugok drainage area in Oncheon stream was developed and combined with a optimization method to determine the optimal location and number of best management practices (BMPs) for storm water runoff reduction. This model is based on the SCS-CN method and integrated with a distributed hydrologic network model of the drainage area using system of 4,211 hydrologic response units (HRUs). Optimal location is found by locating HRU combination that leads to a maximum reduction in peak flow at the drainage outlet in this model. The results of this study indicate the optimal locations and numbers of BMPs, however, for more exact application of this model, project cost and SCS-CN reduction rate of structural facilities such infiltration trench and pervious pavement will have to be considered.

The Applicability of Seismic Waves to Detect a Low Velocity Body of the Geothermal Area (지열부지의 저속도층을 탐지하기 위한 지진파의 응용성)

  • 김소구
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.333-341
    • /
    • 1994
  • The low velocity body was detected during the invesfigation of the crustal structune and upper mantle in the Korean Peninsula using ray method and observational seismic data. We observed the arrival time delays of P and S waves that pass through the Bugok hot spring area and the chugaryong rift zone in the Korean Peninsula. The present geothermal exploration accounts for the high heat flow in these regions, suggesting that the area are the 'delay shadows' produced by a deep, low velocity body(Resenberg et aL, 1980). We tried to verify the hypothesis that the low-velocity body is caused by the partial melting in the lower crust can be explained by the lateral variation(inhomogeneous model) of the lower crust velocity using Ray Method(Cerveny and Psencik, 1983).

  • PDF

Geochemistry of Geothermal Waters in Korea: Environmental Isotope and Hydrochemical Characteristics I. Bugok Area (한반도 지열수의 지화학적 연구: 환경동위원소 및 수문화학적 특성 I. 부곡 지역)

  • Yun, Seong-Taek;Koh, Yong-Kwon;Kim, Chun-Soo;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.185-199
    • /
    • 1998
  • Hydrogeochemical and environmental isotope studies were undertaken for various kinds of water samples collected in 1995-1996 from the Bugok geothermal area. Physicochemical data indicate the occurrence of three distinct groups of natural water: Group I ($Na-S0_4$ type water with high temperatures up to $77^{\circ}C$, occurring from the central part of the geothermal area), Group II (warm $Na-HCO_{3}-SO_{4}$ type water, occurring from peripheral sites), Group III ($Ca-HCO_3$ type water, occurring as surface waters and/or shallow cold groundwaters). The Group I waters are further divided into two SUbtypes: Subgroup Ia and Subgroup lb. The general order of increasing degrees of hydrogeochemical evolution (due to the degrees of water-rock interaction) is: Group III$\rightarrow$Group II$\rightarrow$Group I. The Group II and III waters show smaller degrees of interaction with rocks (largely calcite and Na-plagioclase), whereas the Group I waters record the stronger interaction with plagioclase, K-feldspar, mica, chlorite and pyrite. The concentration and sulfur isotope composition of dissolved sulfate appear as a key parameter to understand the origin and evolution of geothermal waters. The sulfate was derived not only from oxidation of sedimentary pyrites in surrounding rocks (especially for the Subgroup Ib waters) but also from magmatic hydrothermal pyrites occurring in restricted fracture channels which extend down to a deep geothermal reservoir (typically for the Subgroup Ia waters). It is shown that the applicability of alkaliion geothermometer calculations for these waters is hampered by several processes (especially the mixing with Mg-rich near-surface waters) that modify the chemical composition. However, the multi-component mineral/water equilibria calculation and available fluid inclusion data indicate that geothermal waters of the Bugok area reach temperatures around $125^{\circ}C$ at deep geothermal reservoir (possibly a cooling pluton). Environmental isotope data (oxygen-18, deuterium and tritium) indicate the origin of all groups of waters from diverse meteoric waters. The Subgroup Ia waters are typically lower in O-H isotope values and tritium content, indicating their derivation from distinct meteoric waters. Combined with tritium isotope data, the Subgroup Ia waters likely represent the older (at least 45 years old) meteoric waters circuated down to the deep geothermal reservoir and record the lesser degrees of mixing with near-surface waters. We propose a model for the genesis and evolution of sulfate-rich geothermal waters.

  • PDF

Air Quality Prediction by CDMQC and Its Validation in the Ulsan Industrial Complex (CDMQC Model을 이용(利用)한 울산지역(蔚山地域)의 대기질(大氣質) 예측(豫測)과 실측치(實測値)와의 비교연구(比較研究))

  • Shin, Eung Bai;Lee, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.77-90
    • /
    • 1981
  • This study involves 1) air quality disperson predictions and 2) a comparison of the predicted data with the actually measured ones in terms of annual sulfur dioxide concentration in the Ulsan Industial Complex. The prediction was made by utilizing the CDMQC air quality simulation computer model. The higher concentrations were observed at the Bugok Dong (Sampling Site) and the Yeochun Dong Sampling Site with the values of 44 and 46 ppb, respectively whereas the predicted values for both sites were 52 and 47 ppb, respectively. A statistical examination has revealed that the level of confidence was 90.02% from the Chi-squared test and the corelation coefficient was 0.827. It thus demonstrates that the model used for the study appears to be applicable to yield reliable predictions in terms of annual sulfur dioxide concentrations in the study area.

  • PDF

Evaluation of the Effects of Sulfur Dioxide Gas using the Water-Soluble Sulfur Content, Photosynthetic Rate and the Visible Injured Index of Pear(Pyrus serotina) in the Ulsan Industrial Complex Area (배나무잎의 수용성 황 함량, 광합성속도, 가시피해도 분석을 이용한 울산공단지역 아황산가스 영향 평가)

  • Lee, Yong-Beom;Choi, Ki-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.144-154
    • /
    • 1995
  • This study was conducted for the evaluation of air-pollution using pear plant. Twenty-three sites around the Ulsan Industrial Complex Area were selected for the study. The water soluble sulfur content, photosynthetic rate and the visible injured index of pear leaves were evaluated and the results are summarized as follows: 1. Water-soluble sulfur content of pear leaves at survey sites was shown to be an average of 0.201%. The content of their leaves at polluted sites ranged from 0.220 to 0.496%. Water-soluble sulfur content of the pear leaves decreased as the distance became far from the Industrial Complex. 2. The photosynthetic rate of pear leaves decreased with an accumulation of water-soluble sulfur content. However it increased as the distance became greater within the five-kilometer radius of the pollutant. 3. More than 60% of injured rate was shown in pear plant within the five-kilometer radius of the pollutant in 1993. There were high correlations between the visible injured index items. Compared with 1988, the most severely injured sites in 1988 were Yochon-dong and Yaum-dong. But in 1993, they moved to the Yongcham-dong and Bugok-dong area. 4. Water-soluble sulfur content of pear leaves was correlated with the photosynthetic rate of pear leaves. The same tendency was shown between water-soluble sulfur and total injured index. This method using pear plant will be applied to the evaluation of air pollution.

  • PDF