• Title/Summary/Keyword: Building Indoor Temperature

Search Result 284, Processing Time 0.032 seconds

The Characteristic of Volatile Organic Compounds(VOCs) Emission from the Type of Indoor Building Materials as the Temperature and Humidity (온.습도에 따른 건축 내장재별 휘발성유기화합물의 방출특성)

  • Seo, Byeong-Ryang;Kim, Shin-Do;Park, Seong-Kyu
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.292-303
    • /
    • 2006
  • The Volatile Organic Compounds(VOCs) are emitted from various sources and have lots of different form. Recently human are spending the many times at indoor area and indoor air pollution is issued the important social problem. The emission sources of indoor air pollutants are very various, also indoor building materials are composed of very complex chemical compounds, these indoor building materials discharge very much VOCs and other hazardous compounds. In this study, we performed the small chamber test to investigate the VOCs emission concentration and characteristics involving five kinds of the indoor building materials(furniture material, wooden floor, wall paper, paint and tile) under different conditions of four temperature and relative humidity as account of the air flow rate(AFR), air exchange rate(AER), loading factor and air velocity respectively. As the result, It was showed that building materials are emitted the highest VOCs concentration at the beginning of experiment and furniture material is emitted the highest VOCs concentration. Most of the materials were affected by temperature, but paint and tile material were affected by humidity.

Interior heating effect in an office building according to heat properties of light fixture (업무용 건축물의 실내 조명기구 특성에 따른 발열 효과에 관한 연구)

  • Lee, Yoon-Jin;Ahn, Byung-Lip;Kim, Jong-Hun;Jeong, Hak-Geun;Jang, Cheol-Yong;Kim, Tae-Yeon
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.117-122
    • /
    • 2015
  • Purpose: Generally, 30% of the total energy consumption in office building is used for artificial indoor lightings, and almost 75-85% of electric power in fluorescent and Light-Emitting Diode (LED) lightings can be dissipated as a form of heat into indoor environment. The heat generated by indoor lightings can cause the increase of cooling load in office buildings. Thus, it its important to consider indoor lightings as a heat and light source, simultaneously. Method: In this study, we installed two kinds of indoor lightings including fluorescent and LED lightings and measured surface temperature of both indoor lightings. In addition, we obtained ambient temperature of indoor space and finally calculated total heat dissipated from plenum area and surface of lightings. Result: Total indoor heat gain was 87.17Wh and 201.36Wh in cases of six 40W-LED lightings and 64W-fluorescent lightings, respectively.

Experimental Study on Energy Saving Performance of Outdoor Temperature Reset Control Strategy for Central Cooling System (중앙 냉방시스템에 대한 외기보상제어의 절약 성능에 관한 실험적 연구)

  • Kim, Dong-Cheol;Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.30-36
    • /
    • 2011
  • In this study, energy saving performance of outdoor temperature reset control strategy for central cooling system is researched by experiments. Outdoor temperature reset control is the control method to change indoor air set temperature according to outdoor air temperature change. The range of indoor air set temperature is represented by the comfort temperature range of indoor air temperature offered from ASHRAE and indoor air set temperature is programmed between $22^{\circ}C$ and $27^{\circ}C$ by outdoor air temperature $20^{\circ}C{\sim}32^{\circ}C$ in summer. As a result of applying outdoor temperature reset control to central cooling system, the suggested control method shows better performances of energy savings than the conventional method which indoor temperature maintains constantly.

Research and Development of RFIC Technology in Smart Temperature Information Material

  • Chang, Chih-Yuan;Hung, San-Shan;Chang, Yu-Chueh;Peng, Yu-Fang
    • Journal of Construction Engineering and Project Management
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Conservation of energy and fuel is the trend in smart building design. Radio Frequency Integrated Circuit (RFIC) technology is often used in temperature sensing and signal transmission to manage indoor temperature, but it is rarely applied to the shell of the building. Heat retention and poor insulation in building shells are the largest causes of high energy consumption by indoor air conditioning. Through combining RFIC technology with temperature sensors, this study will develop smart temperature information material that can be embedded in concrete. In addition to accurately evaluating the effectiveness of shell insulation material, the already-designed Building Physiology Information System can monitor long-term temperature changes, leading to smarter building health management.

RESEARCH AND DEVELOPMENT OF RFIC TECHNOLOGY IN SMART TEMPERATURE INFORMATION MATERIAL

  • Chih-Yuan Chang;San-Shan Hung;Yu-Chueh Chang;Yu-Fang Peng
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.480-486
    • /
    • 2011
  • Conservation of energy and fuel is the trend in smart building design. Radio Frequency Integrated Circuit (RFIC) technology is often used in temperature sensing and signal transmission to manage indoor temperature, but it is rarely applied to the shell of the building. Heat retention and poor insulation in building shells are the largest causes of high energy consumption by indoor air conditioning. Through combining RFIC technology with temperature sensors, this study will develop smart temperature information material that can be embedded in concrete. In addition to accurately evaluating the effectiveness of shell insulation material, the already-designed Building Physiology Information System can monitor long-term temperature changes, leading to smarter building health management.

  • PDF

The Study of Relationship on Bio-Aerosol with Indoor Temperature Difference (실내 온도차에 따른 부유세균과의 상관관계 연구)

  • Park, Jin-Young;Kim, Sam-Uel;Yun, Jung-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.737-741
    • /
    • 2008
  • The indoor environment has an effect on heath of human in indoor room that they live largely. We will know Bio-Aerosol that causes illness, such as a flu, an asthma and an atopy etc. and see a relationship between Bio-Aerosol and temperature as an experiment in Air-Conditioned room. In the future, this data can use a basic data for an effect of Bio-Aerosol on indoor environment.

  • PDF

The Indoor Environmental Quality Improving and Energy Saving Potential of Phase-Change Material Integrated Facades for High-Rise Office Buildings in Shanghai

  • Jin, Qian
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • The conflict between indoor environmental quality and energy consumption has become an unneglectable problem for highrise office buildings, where occupants' productivity is highly affected by their working environment. An effective Façade, therefore, should play the role of an active building skin by adapting to the ever-changing external environment and internal requirements. This paper explores the energy-saving and indoor environment-improving potential of a phase-change material (PCM) integrated Façade. Building performance simulations, combined with parametric study and sensitivity analysis, are adopted in this research. The result quantifies the potential of a PCM-integrated Façade with different configurations and PCM properties, taking as an example a south-oriented typical office room in Shanghai. It is found that a melting temperature of around $22^{\circ}C$ for the PCM layer is optimal. Compared to a conventional Façade, a PCM-integrated Façade effectively reduces total energy use, peak heating/cooling load, and operative temperature fluctuation during the periods of May-July and November-December.

A Study on the Mitigation of Threat Zones for Indoor Chlorine Release using Effective Leakage Areas of Building and Box Model (건물의 유효누출면적 및 박스모델을 이용한 염소 실내 누출의 위험지역 완화에 관한 연구)

  • Kwak, Sollim;Lee, Eunbyul;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.51-59
    • /
    • 2018
  • It is difficult to determine the outdoor toxic level of hazardous chemicals that are leaked in the building, since there are no efficient ways to calculate how much percentage of the leaked chemicals is released into the outdoor atmosphere. In address to these problems, we propose a reasonable box model that can quantitatively evaluate the mass rate of the indoor chlorine leakage into the outside of the building. The proposed method assumes that the indoor chlorine leakage is fully mixed with the indoor air, and then the mixture of the chlorine and indoor air is exfiltrated into the outside of the building through effective leakage areas of the building. It is found that the exfiltration rate of the mixture of the chlorine and indoor air is strongly dependent on the temperature difference between inside and outside the building than the atmospheric wind speed. As compared with a conventional method that uses a vague mitigation factor, our method is more effective to evaluate the outdoor toxic threat zone of the chlorine that are leaked in the building, because it can consider the degree of airtight of the building in the evaluation of the threat zone.

Evaluation of Indoor Air Environment by Changing Diffuser Location and Air Temperature with Under Floor Air Conditioning System (바닥취출 및 흡입시스템 공조방식에서 취출조건 변경시 실내공기환경 평가)

  • Kim Se-hwan;Park Jong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.397-403
    • /
    • 2005
  • The thermal comfort of occupants is directly related to several environmental factors such as velocity of air flow, turbulence intensity and temperature distribution of indoor air. The purpose of this study is to evaluate the indoor air flow and temperature distribution in office area using under-floor air-conditioning system (UFAC System) based on the results from physical measurements and to perform a Computer Fluid Dynamics (CFD) under the same condition of inlet and outlet as field measurement. The results from the CFD simulation are similar to those from the field measurement. The results show that UFAC system is provide proper indoor condition for occupants.

Environmental Analysis of a Windowless Delivery Swine Building : Temperature and Relative Humidity (무창분만돈사의 온.습도 환경 분석)

  • 이성현;조한근;장유섭
    • Journal of Animal Environmental Science
    • /
    • v.3 no.2
    • /
    • pp.77-85
    • /
    • 1997
  • Recently, local swine producers are rapidly adopting the indoor production system which developed in foreign countries. However, this imported system is reported as not functioning properly because of different climate conditions. The objective of this project was to investigate the environment characteristics of a windowless delivery swine building. The parameters studied were the heating and cooling loads, the daily changes of indoor temperature and relative humidity, the horizontal and the vertical distributions of indoor temperature, and the effect of mist cooling on indoor temperature. From this study, the following are founded : 1. The maximum cooling and heating loads were - 317.0kcal/㎡$.$h and 336.5kal/㎡$.$h in summer and in winter. The large loads seems to be on account of inappropriate operations of ventilating fans. 2. The daily variations of relative humidity in indoor were smaller than those in outside. Those values both in summer and in winter as relative humidities in door was lower than optimum for growing pigs, the additional humidifier might be helpful to increase the relative humidity in indoor. 3. The horizontal distribution of the indoor temperature was found to be uniform in the variation range of 1$^{\circ}C$. 4. The vertical distribution of the indoor temperature was not found to be uniform; the temperature of upper part was higher than that of slot part. 5. Average values of indoor temperature became lower by 3$^{\circ}C$ by mist cooling. But the variation of temperature was found to be larger; The middle part of the room was cooled down, but the corner part of the room was not affected by misting due to uneven nozzle configuration.