• 제목/요약/키워드: Bumper model

검색결과 53건 처리시간 0.024초

충돌성능을 고려한 승용차 범퍼빔 단면의 최적화 (Optimization of Bumper Beam Section of Crashworthiness)

  • 강성종
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.276-284
    • /
    • 1998
  • Optimum design of bumper beam is investigated using nonlinear CAE structural analysis techniques.In order to minimize its weight, while enhancing structural performances, bumper beam structural analyses were carried out to produce optimum section. Model is composed of bumper beam and stay. First, considering FMVSS safety standard, static strength and energy absorbing capability were estimated for several competitive bumpers through pendulum static analysis, and most promising section was chosen. Next, to ensure dynamic crashworthinesss performance for center pole impact was evaluated for the bumper beam with chosen section through pendulum static analysis, referring to DHS bumper dynamic impact standard. Finally, 2.5 mph bumper beam was designed and its structural performance was estimated. Through this investigation, an optimized bumper beam section with less weight of 20% while maintaining almost equal carshworthiness, compared with a conventional bumper beam section which proved its impact crashworthiness by experiments, was developed.

  • PDF

자동차의 프런트 범퍼 가드에 관한 내구성 연구 (A Durability Investigation on Automotive Front Bumper Guard)

  • 최계광;조재웅
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.1-7
    • /
    • 2020
  • In this study, three models on the installation of automotive additional front bumper guard were designed and the structural analysis was carried out. The additional front bumper models B and C appears to be safer on stability instead of the basic front bumper model A. Model A with a simple structure is shown to have the safe region overall except in the area where the load is applied directly. Models B and C are shown to have the shortest lives at the regions where the bumpers are connected with each other. By comparing with the least fatigue lives at models A, B and C, Model B has the longest life with the best durability.

전방 차체의 정면 충돌성능 향상을 위한 범퍼 스테이 설계 (Bumper Stay Design for Improving Frontal Crash Performance of Front Body)

  • 강성종
    • 자동차안전학회지
    • /
    • 제6권2호
    • /
    • pp.5-11
    • /
    • 2014
  • Front side member of the front impacted vehicle plays a key role in minimizing the impacting load transferred to the compartment. To perform that required function, axial collapse should be dominant during side member crashing and, prior to designing side member, it is crucial to minimize bending moment occurred at the front end. In this study, for FE model of a SUV front body, front impact analyses were carried to find out bumper stay design which effectively develope axial collapse in the side member. As a previous work, the thickness of side member reinforcement were changed. Next, the inner thickness of bumper stay was increased. Also, the bead shape and location were modified. Final front body model showed much more axial collapsed mode and enhanced crash performance. In addition, a stay of octagon section was adopted and that model exhibited distinctive increase in impact energy absorption.

자동차용 유리섬유강화 매트 수지(GMT) 범퍼의 충돌성능 평가 수치모사 (Impact Simulation of Automotive GMT Bumper)

  • 백승훈;문종근;정우식;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.137-140
    • /
    • 2003
  • Impact of Automotive GMT(Glassfiber reinforced Mat Thermoplastic) Bumper for '5Mhp Barrier Test'was simulated using ls-dyna. The FE model consists of foam which is energy absorber, bumper beam and stay etc. Bumper intrusion and deflection was compared with the experimental results. Effects of uncertainty of material property and deviation of impact velocity were considered and results were compared with those of base design. Effects of number of integration points through th thickness was also investigated.

  • PDF

봅슬레이 범퍼 형상에 대한 공력학적 연구 (AERODYNAMIC STUDY ON BOBSLEIGH BUMPER SHAPE)

  • 이영남;김광용
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.37-45
    • /
    • 2015
  • A parametric study on the shapes of bobsleigh bumpers has been performed to reduce the aerodynamic drag. Effects of geometric parameters, such as leading angle of leading bumper, the ratio of minimum width to maximum width of leading bumper, the ratio of leading bumper length to trailing bumper length, trailing angle of trailing bumper, and the ratio of bumper height to installation location of bumper from the bottom of bobsleigh, on the aerodynamic performance of the bobsleigh were estimated using 3-D Reynolds-averaged Navier-Stokes equations. The turbulence was analyzed using the shear stress turbulence model. Reynolds number based on the hydraulic diameter of the external flow channel was in the range of 150,000~1,000,000. Numerical results for drag coefficient were validated compared to experimental data. Ranges of the five geometric parameters were determined according to the rule of Federation Internationale de Bobsleigh et de Tobaganning. The aerodynamic performance of the bobsleigh sled was most sensitive to the leading angle of leading bumper and the ratio of minimum width to maximum width of leading bumper.

IIHS 충격해석에 근거한 구간 조합 복합재료 범퍼 빔 개발 (Development of the Piecewisely-integrated Composite Bumper Beam Based on the IIHS Crash Analysis)

  • 정찬희;함석우;김경석;전성식
    • Composites Research
    • /
    • 제31권1호
    • /
    • pp.37-41
    • /
    • 2018
  • 본 연구에서는 IIHS기준 범퍼 충돌해석을 통하여, 구간 조합 복합 범퍼 빔의 특성 분석하였다. 충돌 시 범퍼 빔의 5개 영역에서 지배적인 하중 유형에 대한 정보를 얻기 위해 Al 범퍼 빔에 대한 IIHS 범퍼 충돌 해석이 진행되었다. 또한, 항공우주 분야에서 빈번히 사용되는 5가지 적층순서 중, 인장 및 압축하중에 가장 효과적인 적층순서가 복합재료 쿠폰 해석을 통해 결정되었다. 이와 더불어, 결정된 두가지 복합재료의 적층순서를 적용한 복합재료 빔에 대해 3점 굽힘 해석이 수행되었다. 마지막으로, IIHS 범퍼 충돌 해석을 진행하여 구간 조합으로 이루어진 복합재료 범퍼 빔을 다른 유형의 복합 범퍼 빔과 비교하였다. 제안된 구간조합 복합재료 범퍼 빔은 단일 적층순서로 이루어진 복합재료 범퍼 빔에 비해 우수한 충돌 특성을 나타내었다.

알루미늄 범퍼 빔 곡률압출공정에 관한 연구 (A Study on The Curvature Extrusion for Al Bumper Beam)

  • 이상곤;김병민;오개희;박상우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.42-45
    • /
    • 2008
  • Recently, aluminum is widely used to reduce the vehicle weight. Aluminum curved extruded products are used for the design of automotive frame parts. This study focuses on the determination of process condition fur automotive bumper beam with various curvatures. In this study, a curvature prediction model has been proposed considering the geometric relationship and the characteristic of the curvature extrusion equipment. Using the proposed model and FE analysis, the appropriated process condition was determined to produce the bumper beam. Finally, curvature extrusion experiment was carried out to verify the effectiveness of the proposed curvature prediction model and the process condition.

  • PDF

IIHS 풀 오버랩 범퍼 시험 대응 범퍼 백빔 중앙 보강재 설계 (Design of Bumper Backbeam Center Reinforcement Bracket for IIHS Full Overlap Bumper Test)

  • 강성종
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.105-111
    • /
    • 2015
  • Since 2007, Insurance Institute of Highway Safety(IIHS) has conducted the new bumper test using bumper barrier to estimate the repair cost of impacted vehicle. In this study, for the front body FE model of a medium size passenger car analyzes were carried out to optimize the shape of backbeam center reinforcement bracket. First, overlap effect was examined with changing the overlap magnitude and spot welds were added along the backbeam center line for reducing the section shear deformation. Next, for an overlap model design parameter study was performed for the bracket. Thickness effect was examined and an inner reinforcement was added to the bracket. Also, the lower part of bracket was deleted and additionally the bracket length was extended. The results were discussed in terms of backbeam backward deflection, barrier backstop intrusion and weight. Compared with the current design, the final model showed 44.1% bracket weight reduction with 30.0% decrease of backbeam deflection.

설계변수에 따른 알루미늄 범퍼 시스템의 저속 충돌해석 (Low Speed Crash Behaviour of Aluminium Bumper System W.R.T. Design Variables)

  • 김대영;한보석;홍민선;김동옥;전성식
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.11-18
    • /
    • 2017
  • In the present study, the low speed (4 km/h) crash behaviour of an aluminium bumper system was characterised by FE analyses based on the FMVSS 581, which regulates automotive bumpers. Two types of cross-sectional designs, i.e., Model 1, which contains a single rib and Model 2, double ribs, have been considered along with Al7021, 6082 and 6060 for the aluminium bumper back beam. Variations in thickness starting from 2 to 4 mm of the bumper system cross-section in the FE model was implemented in order to investigate the thickness effect on the bumper's crash behaviour.. Three kinds of design variables, namely, number of ribs, material and thickness, are considered. The FE analysis results are summarised with the maximum load and the Specific Energy Absorption (SEA) since they are the key factors in determining the crashworthiness of automotive structures. The results may also be able to indicate how to achieve lightweight structure of the automotive bumper system either directly or indirectly.

시뮬레이션을 이용한 하이브리드 범퍼 빔 개발 (Development of n Hybrid Bumper Beam Using Simulation)

  • 이종길;강동관
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.326-330
    • /
    • 2007
  • Bumper back beam is one of the essential structural components of front-end module. It should be designed to withstand a minor bump in low-speed collision, 2.5 mph crash test for example. And weight reduction is always important problem in the design of almost all the parts in car for energy saving. So, the key issues in shape design of a bumper are weight reduction and the performance in 2.5mph crash test. In this study, a light weight and high performance bumper back beam model was developed using analytical approach based on mechanics and FE simulation together.

  • PDF