• Title/Summary/Keyword: C-C composites

Search Result 2,276, Processing Time 0.033 seconds

Research on the Oxidation-Protective Coatings for Carbon/Carbon Composites

  • Li, He-Jun;Fu, Qian-Gang;Huang, Jian-Feng;Zeng, Xie-Rong;Li, Ke-Zhi
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.71-78
    • /
    • 2005
  • Anti-oxidation coatings are the key technique for carbon/carbon (C/C) composites used as the thermal structural materials. The microstructure and oxidation behavior of several kinds of high-performance ceramic coatings for C/C composites prepared in Northwestern Polytechnical University were introduced in this paper. It showed that the ceramic coatings such as SiC, Si-$MoSi_2$, SiC-$MoSi_2$, $Al_2O_3$-mullite-SiC and SiC/yttrium silicate/glass coatings possessed excellent oxidation resistance at high temperatures, and some of these coatings were characterized with excellent thermal shock resistance. The SiC-$MoSi_2$ coating system has the best oxidation protective property, which can effectively protect C/C composites from oxidation up to 1973 K. In addition, the protection and failure reasons of some coatings at high temperature were also provided.

  • PDF

Fabrication of SiC Fiber-SiC Matrix Composites by Reaction Sintering

  • Lim, Kwang-Young;Kim, Young-Wook;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.204-207
    • /
    • 2008
  • This paper presents a new process for producing SiC fiber-SiC matrix(SiC/SiC) composites by reaction sintering. The processing strategy for the fabrication of the SiC/SiC composites involves the following: (1) infiltration of the SiC fiber fabric using a slurry consisting of Si and C precursors, (2) stacking the slurry-infiltrated SiC fiber fabric at room temperature, (3) cross-linking the stacked composites, (4) pyrolysis of the stacked composites, and (5) hot-pressing of the pyrolyzed composites. It was possible to obtain dense SiC/SiC composites with relative densities of >96% and a typical flexural strength of ${\sim}400$ MPa.

Fabrication of SiC/SiC Composites by Reaction Sintering Process (반응소결법에 의한 SiC/SiC 복합재료의 제조)

  • Lee, S.P.;Yoon, H.K.;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.27-31
    • /
    • 2001
  • Hi-Nicalon SiC fiber reinforced SiC composites (SiC/SiC) have been fabricated by the reaction sintering process. Braided Hi-Nicalon SiC fiber with double interphases of BN and SiC was used in this composite system. The microstructures and the mechanical properties of reaction sintered SiC/SiC composites were investigated through means of electron microscopies (SEM, TEM, EDS) and bending tests. The matrix morphology of reaction sintered SiC/SiC composites was composed of the SiC phases that the composition of the silicon and the carbon is different. The TEM analysis showed that the residual silicon and the unreacted carbon were finely distributed in the matrix region of reaction sintered SiC/SiC composites. Reaction sintered SiC/SiC composites also represented proper flexural strength and fracture energy, accompanying the noncatastrophic failure behavior.

  • PDF

Effect of HTT on Bending and Tensile Properties of 2D C/C Composites

  • Dhakate, S.R.;Aoki, T.;Ogasawara, T.
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.234-242
    • /
    • 2005
  • Bending and tensile properties of 2D cross-ply C/C composites with processing heat treatment temperature (HTT) are evaluated. C/C composites used are made from two types of PAN based T700 and M40 carbon fibers with phenolic resin as carbon matrix precursor. Both the types of composites are heat treated at different temperatures (ranging from 750 to $2800^{\circ}C$) and characterized for bending and tensile properties. It is observed that, real density and open porosity increases with HTT, however, bulk density does show remarkable change. The real density and open porosity are higher in case T-700 carbon fiber composites at $2800^{\circ}C$, even though the density of M40 carbon fiber is higher. Bending strength is considerably greater than tensile strength through out the processing HTT due to the different mode of fracture. The bending and tensile strength decreases in both composites on $1000^{\circ}C$ which attributed to decrease in bulk density, thereafter with increase in HTT, bending and tensile strength increases. The maximum strength is in T700 fiber based composites at HTT $1500^{\circ}C$ and in M40 fiber based composites at HTT $2500^{\circ}C$. After attending the maximum value of strength in both types of composite at deflection HTT, after that strength decreases continuously. Decrease in strength is due to the degradation of fiber properties and in-situ fiber damages in the composite. The maximum carbon fiber strength realization in C/C composites is possible at a temperature that is same of fiber HTT. It has been found first time that the bending strength more or less 1.55 times higher in T700 fiber composites and in M40 fiber composites bending strength is 1.2 times higher than that of tensile strength of C/C composites.

  • PDF

Effect of Compositional Parameters on the Characteristics of C-SiC-$B_4C$ Composites

  • Aggarwal, R.K.;Bhatia, G.B.;Saha, M.;Mishra, A.
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.164-169
    • /
    • 2004
  • Carbon-ceramic composites refer to a special class of carbon based materials which cover the main drawbacks of carbon, particularly its proneness to air oxidation, while essentially retaining its outstanding properties. In the present paper, the authors report the results of a systematic study made towards the development of C-SiC-$B_4C$ composites, which involves the effects of compositional parameters, namely, carbon-to-ceramic and ceramic-to-ceramic ratios, on the oxidation behaviour as well as other characteristics of these composites. The C-SiC-$B_4C$ composites, heat-treated to $1400^{\circ}C$, have shown that their oxidation behaviour at temperatures of 800~$1200^{\circ}C$ depends jointly on the total ceramic content and the SiC : $B_4C$ ratio. Good compositions of C-SiC-$B_4C$ composites exhibiting zero weight loss in air at temperatures of 800~$1200^{\circ}C$ for periods of 4~9 h, have been identified. Composites with these compositions undergo a weight gain or a maximum weight loss of less than 3% during the establishment of a protective layer at the surface of carbon in a period of 1~6 h. Significant improvement in the strength of C-SiC-$B_4C$ composites has been observed which increases with an increase in the total ceramic content and also with an increase in the SiC : $B_4C$ ratio.

  • PDF

R-Curve Behavior of Silicon Carbide-titanium Carbide Composites

  • An, Hyun-Gu;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1075-1079
    • /
    • 2001
  • The R-curve for in situ-toughened SiC-30 wt% TiC composites was estimated by the indentation-strength method and compared to that of monolithic SiC with toughened microstructure. Both materials exhibited rising R-curve behavior. The SiC-TiC composites, however, displayed better damage tolerance and higher resistance to crack growth. Total volume fractions of SiC key grains, which take part in toughening mechanisms such as crack bridging and crack deflection, were 0.607 for monolithic SiC ceramics and 0.614 for SiC-TiC composites. From the microstructural characterization and the residual stress calculation, it was inferred that this superior performance of SiC-TiC composites can be attributed to stress-induced microcracking at heterophase (SiC/TiC) boundaries and some contribution from carck deflection by TiC grains.

  • PDF

Effects of heat-treatment temperature on carbon-based composites with added illite

  • Jeong, Eui-Gyung;Kim, Jin-Hoon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.95-101
    • /
    • 2011
  • To investigate new applications for illite as an additive for carbon-based composites, the composites were prepared with and without illite at different heat-treatment temperatures. The effects of the heat-treatment temperature on the chemical structure, microstructure, and thermal oxidation properties of the resulting composites were studied. As the heat-treatment temperature was increased, silicon carbide SiC formation via carbothermal reduction increased until all the added illite was consumed in the case of the samples heat-treated at $2,300^{\circ}C$. This is attributed to the intimate contact between the $SiO_2$ in the illite and the phenol carbon precursor or the carbon fibers of the preform. Among composites prepared at all temperatures, those with illite addition exhibited fewer pores, voids, and interfacial cracks, resulting in larger bulk densities and lower porosities. A delay of oxidation was not observed in the illite-containing composites prepared at $2,300^{\circ}C$, suggesting that the illite itself absorbed energy for exfoliation or other physical changes. Therefore, if the illite-containing C/C composites can reach a density generally comparable to that of other C/C composites, illite may find application as a filler for C/C composites. However, in this study, the illite-containing C/C composites exhibited low density, even when prepared at a high heat-treatment temperature of $2300^{\circ}C$, although the thermal oxidation of the resulting composites was improved.

New Application of Clay Filler for Carbon/Carbon Composites and Improvement of Filler Effect by Clay Size Reduction

  • Jeong, Eui-Gyung;Kim, Jin-Hoon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.293-297
    • /
    • 2010
  • To investigate new potential application of a clay material for C/C composites, illite added C/C composites were prepared with various illite contents. The improvement of filler effect by illite size reduction was also investigated using wet ballmilling by evaluating illite/phenolic resin infiltration using bulk density and porosity measurements, chemical structural changes of the composites using XRD, and thermal oxidation stability in air of the composites using TGA. The size reduction of illite resulted in narrower particle size distribution and improved illite infiltration into carbon preform. And the resultant C/C composites prepared with illite had even more improved thermal oxidation stability in air, showing more increased IDTs up to $100^{\circ}C$, compared to those of the C/C composites with pristine illite, due to the SiC formation through carbothermal reduction between illite and carbon materials. The illite induced delay in oxidation of the illite-C/C composites was also observed and the delayed oxidation behavior was attributed to the layered structure of illite, which improved illite/phenol resin infiltration. Therefore, the potential use of illite as filler to improve oxidation stability of C/C composite can be promising. And the size reduction of illite can improve its effect on the desired properties of illite-C/C composites even more.

Fabrication of SiC-TiC Composites via Mechanochemical Synthesis

  • Park, Heon-Jin;Lee, Ki-Min;Kim, Hyung-Jong;Lee, June-Gunn
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.4
    • /
    • pp.314-318
    • /
    • 2001
  • SiC-TiC composites have been fabricated by using a mechanochemical processing of a mixture of Si, Ti, and C at room temperature and subsequent hot pressing. TiC powders have been obtained by the mechanochemical processing of a mixture of Ti and C whereas SiC powders has not been obtained from a mixture of Si and C. By using the exothermic reaction between Ti and C, SiC-TiC powder could be obtained from the mixture of Si, Ti, and C using the mechanochemical processing for more than 12h. The X-ray diffraction analysis has shown that the powder subjected to the mechanochemical processing consisted of the particles having crystallite size below 10nm. Fully densified SiC-TiC composites have been obtained by hot-pressing of the powder at 1850$\^{C}$ for 3h and it has shown comparable mechanical properties to those of the SiC-TiC composites prepared from the commercially available SiC and TiC powders. Flexural strength of 560 MPa and fracture toughness of 4.8 MP$.$am$\_$1/2/ have been shown for the SiC-TiC composites with composition corresponding to 0.75:0.25:1 mole ratio of Si:Ti:C.

  • PDF

Property Evaluation of Reaction Sintered SiC/SiC Composites Fabricated by Melt Infiltration Process (용융함침법에 의한 반응소결 SiC/SiC 복합재료의 특성 평가)

  • Lee, Sang-Pill;Shin, Yun-Seok;Kohyama, Akira
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.205-210
    • /
    • 2007
  • SiC/SiC composites and monolithic SiC materials have been fabricated by the melt infiltration process, through the creation of crystallized SiC phase by the chemical reaction of C and Si. The reinforcing material used in this system was a braided Hi-Nicalon SiC fiber with double interphases of BN and SiC. The microstructures and the mechanical properties of RS-SiC based materials were investigated through means of SEM, TEM, EDS and three point bending test. The matrix morphology of RS-SiS/SiC composites was greatly composed of the SiC phases that the chemical composition of Si and C is different. The TEM analysis showed that the crystallized SiC phases were finely distributed in the matrix region of RS-SiC/SiC composites. RS-SiC/SiC composites also represented a good flexural strength and a high density, accompanying a pseudo failure behavior.