• Title/Summary/Keyword: C-Si PV sub-module

Search Result 2, Processing Time 0.015 seconds

Improvement of Solar Conversion Efficiency in a c-Si PV Sub-Module Integrated with SiOx Anti-Reflection Grating for Oblique Optical Irradiation (측면입사광에 대한 SiOx 무반사 회절격자 결합 c-Si PV 서브-모듈의 광전변환효율 향상)

  • Shim, Ji-Hyun;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.325-330
    • /
    • 2017
  • We fabricated 1-D and 2-D diffraction gratings of SiOx anti-reflection (AR) film grown on a quartz substrate and integrated them into a c-Si photovoltaic (PV) submodule. The light-trapping effect of the resulting submodules was studied in terms of the oblique optical incident angle, ${\theta}_i$. As the ${\theta}_i$ increased, solar conversion efficiency, ${\eta}$, was improved as expected by the increased optical transmission caused by the grating. For ${\theta}_i{\leq}30^{\circ}$, the relative solar conversion efficiency, ${\Delta}{\eta}$, of a 1-D SiOx (t=300 nm) grating, compared to that of a flat SiOx AR-coated integrated PV submodule, was improved very little, with a small variation of within 2%, but increased markedly for ${\theta}_i{\geq}40^{\circ}$. We observed a change of ${\Delta}{\eta}$ as large as 10.7% and 9.5% for the SiOx grating of period t=800 nm and 1200 nm, respectively. For a 2-D SiOx (t=300 nm) grating integrated PV submodule, however, the optical trapping behavior was similar in terms of ${\theta}_i$ but its variation was small, within ${\pm}1.0%$.

Environmental Impact Evaluation of Mechanical Seal Manufacturing Process by Utilizing Recycled Silicon from End-of-Life PV Module (태양광 폐모듈 실리콘을 재활용한 메커니컬 실 제조공정의 환경성평가)

  • Shin, Byung-Chul;Shin, Ji-Won;Kwon, Woo-Teck;Choi, Joon-Chul;Sun, Ju-Hyeong;Jang, Geun-Yong
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.203-209
    • /
    • 2022
  • An environmental evaluation was conducted by employing LCA methodology for a mechanical seal manufacturing process that uses recycled silicon recovered from end-of-cycle PV modules. The recycled silicon was purified and reacted with carbon to synthesize β-SiC particles. Then the particles underwent compression molding, calcination and heat treatment to produce a product. Field data were collected and the potential environmental impacts of each stage were calculated using the LCI DB of the Ministry of Environment. The assessment was based on 6 categories, which were abiotic resource depletion, acidification, eutrophication, global warming, ozone depletion and photochemical oxidant creation. The environmental impacts by category were 45 kg CO2 for global warming and 2.23 kg C2H4 for photochemical oxide creation, and the overall environmental impact by photochemical oxide creation, resource depletion and global warming had a high contribution of 98.7% based on weighted analysis. The wet process of fine grinding and mixing the raw silicon and carbon, and SiC granulation were major factors that caused the environmental impacts. These impacts need to be reduced by converting to a dry process and using a system to recover and reuse the solvent emitted to the atmosphere. It was analyzed that the environmental impacts of resource depletion and global warming decreased by 53.9% and 60.7%, respectively, by recycling silicon from end-of-cycle PV modules. Weighted analysis showed that the overall environmental impact decreased by 27%, and the LCA analysis confirmed that recycling waste modules could be a major means of resource saving and realizing carbon neutrality.