• Title/Summary/Keyword: C-terminal truncation

Search Result 24, Processing Time 0.028 seconds

C-terminal truncated HBx reduces doxorubicin cytotoxicity via ABCB1 upregulation in Huh-7 hepatocellular carcinoma cells

  • Jegal, Myeong-Eun;Jung, Seung-Youn;Han, Yu-Seon;Kim, Yung-Jin
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.330-335
    • /
    • 2019
  • Hepatitis B virus (HBV) encoding the HBV x protein (HBx) is a known causative agent of hepatocellular carcinoma (HCC). Its pathogenic activities in HCC include interference with several signaling pathways associated with cell proliferation and apoptosis. Mutant C-terminal-truncated HBx isoforms are frequently found in human HCC and have been shown to enhance proliferation and invasiveness leading to HCC malignancy. We investigated the molecular mechanism of the reduced doxorubicin cytotoxicity by C-terminal truncated HBx. Cells transfected with C-terminal truncated HBx exhibited reduced cytotoxicity to doxorubicin compared to those transfected with full-length HBx. The doxorubicin resistance of cells expressing C-terminal truncated HBx correlated with upregulation of the ATP binding cassette subfamily B member 1(ABCB1) transporter, resulting in the enhanced efflux of doxorubicin. Inhibiting the activity of ABCB1 and silencing ABCB1 expression by small interfering ribonucleic acid (siRNA) increased the cytotoxicity of doxorubicin. These results indicate that elevated ABCB1 expression induced by C-terminal truncation of HBx was responsible for doxorubicin resistance in HCC. Hence, co-treatment with an ABCB1 inhibitor and an anticancer agent may be effective for the treatment of patients with liver cancer containing the C-terminal truncated HBx.

C-terminal Truncation Mutant of the Human ${\beta}_2$-adrenergic Receptor Expressed in E. coli as a Fusion Protein Retains Ligand Binding Affinity

  • Shin, Jin-Chul;Lee, Sang-Derk;Shin, Chan-Young;Lee, Sang-Bong;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.4 no.1
    • /
    • pp.97-102
    • /
    • 1996
  • To investigate whether human $\beta$$_2$-adrenergic receptor devoid of the C-terminal two transmembrane helices retain its ligand binding activity and specificity, 5'780-bp DNA fragment of the receptor gene which encodes amino acid 1-260 of human $\beta$$_2$-adrenergic receptor was subcloned into the bacterial fusion protein expression vector and expressed as a form of glutathione-S-transferase (GST) fusion protein in E. coli DH5$\alpha$. The receptor fusion protein was expressed as a membrane bound form which was verified by SDS-PAGE and Western blot. The fusion protein expressed in this study specifically bound $\beta$-adrenergic receptor ligand [$^3$H] Dihydroalprenolol. In saturation ligand binding assay, the $K_{d}$ value was 7.6 nM which was similar to that of intact $\beta$$_2$-adrenergic receptor in normal animal tissue ( $K_{d}$=1~2 nM) and the $B_{max}$ value was 266 fmol/mg membrane protein. In competition binding assay, the order of binding affinity of various adrenergic receptor agonists to the fusion protein was isoproterenol》epinephrine norepinephrine, which was similar to that of intact receptor in normal animal tissue. These results suggest that N-terminal five transmembrane helices of the $\beta$$_2$-adrenergic receptor be sufficient to determine the ligand binding activity and specificity, irrespective of the presence or absence of the C-terminal two transmembrane helices.s.s.s.

  • PDF

A Microbial D-Hydantoinase is Stabilized and Overexpressed as a Catalytically Active Dimer by Truncation and Insertion of the C-Terminal Region

  • KIM, GEUN-JOONG;HAK-SUNG KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.242-248
    • /
    • 2002
  • Previously, it was reported that the nonhomologous C-terminal regions of the D-hydantoinases are nonessential for catalysis, but affect the oligomeric structure of the enzyme [3]. In an effort to further confirm the above observation, the C-terminal region-inserted enzyme was constructed by attaching a peptide (22 residues) at the C-terminal of the D-hydantoinase from Bacillus thermocatenulatus GH2, and its structural and biochemical properties were compared with both the wild-type and C-terminal region-truncated enzymes. As a result, native tetrameric D-hydantoinase was dimerized as the truncated enzyme, and the inserted mutant with a new sequence was expressed as a catalytically active form in E. coli. Expression level of the inserted and truncated enzymes were found to be significantly increased compared to the level of the wild-type enzyme, and this appears to be due to the reduced toxic effect of the mutant enzymes on host cells. Dimerized enzymes exhibited increased thermo- and pH stabilities considerably when compared with the corresponding wild-type enzyme. Comparison of the substrate specificity between the mutant and wild-type enzymes suggests that the substrate specificity of the D-hydantoinase is closely linked with the oligomeric structure.

The Influence of the N-Terminal Region of Antimicrobial Peptide Pleurocidin on Fungal Apoptosis

  • Choi, Hyemin;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1386-1394
    • /
    • 2013
  • In our previous study, the 25-mer antimicrobial peptide pleurocidin (Ple) had been thought to induce apoptosis in Candida albicans. This study demonstrated that reactive oxygen species (ROS) production was a major cause of Ple-induced apoptosis. Four truncated analogs were synthesized to understand the functional roles in the N- and C-terminal regions of Ple on the apoptosis. Ple, Ple (4-25), Ple (1-22), and Ple (1-19) produced ROS, including hydroxyl radicals, on the order of [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19)], whereas Ple (7-25) did not induce any ROS production. The results suggested that the N-terminal deletion affected the ROS-inducing activities much more than that of the C-terminal deletion, and net hydrophobicity [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19) > Ple (7-25)] was related to ROS generation rather than other primary factors like net charge. Hence, we focused on the N-terminal-truncated peptides, Ple (4-25) and Ple (7-25), and examined other apoptotic features, including mitochondrial membrane depolarization, caspase activation, phosphatidylserine externalization, and DNA and nuclear fragmentation. The results also confirmed the disappearance of apoptotic activity of Ple (7-25) by the truncation of the N-terminal region (1-6) and the specific activity patterns between Ple and analogs. In conclusion, the N-terminal region of Ple played an important role in apoptosis.

C-terminal truncation of a bovine B12 trafficking chaperone enhances the sensitivity of the glutathione-regulated thermostability

  • Jeong, Jinju;Park, Jihyun;Lee, Dong-Yeon;Kim, Jihoe
    • BMB Reports
    • /
    • v.46 no.3
    • /
    • pp.169-174
    • /
    • 2013
  • The human $B_{12}$ trafficking chaperone hCblC is well conserved in mammals and non-mammalian eukaryotes. However, the C-terminal ~40 amino acids of hCblC vary significantly and are predicted to be deleted by alternative splicing of the encoding gene. In this study, we examined the thermostability of the bovine CblC truncated at the C-terminal variable region (t-bCblC) and its regulation by glutathione. t-bCblC is highly thermolabile ($T_m={\sim}42^{\circ}C$) similar to the full-length protein (f-bCblC). However, t-bCblC is stabilized to a greater extent than f-bCblC by binding of reduced glutathione (GSH) with increased sensitivity to GSH. In addition, binding of oxidized glutathione (GSSG) destabilizes t-bCblC to a greater extent and with increased sensitivity as compared to f-bCblC. These results indicate that t-bCblC is a more sensitive form to be regulated by glutathione than the full-length form of the protein.

Synthesis and Characterization of GGN4 and its Tryptophan Substituted Analogue Peptides

  • Kim, Se-Ha;Kim, Ji-Young;Lee, Byeong-Jae;Kim, Soon-Jong
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 1999
  • Gaegurin 4 (GGN4), a broad-spectrum antibiotic, is a 37-amino acid peptide isolated from the Korean frog, Rana rugosa. In this study, we have chemically synthesized and purified GGN4 analogues where the C-terminal portion is truncated and/or substituted with tryptophan. These peptides show significantly different biological activities depending on the location of tryptophan and the number of amino acids truncated from the C-terminal end. While deletion of 9 amino acids from the C-terminal seems to be marginally tolerable in maintaining the antimicrobial activity, further deletion of up to 14 amino acid residues decreases the potency by more than 60-fold towards Gram-positive, and 10-fold towards Gram-negative, bacteria. Surprisingly, the reduced activity of the shorter peptide can be completely restored by a single substitution of aspartic acid 16 to tryptophan 16 (D16W). Also, the truncation seems to decrease the specificity of antibiotic activity more towards Gram-positive than towards Gram-negative bacteria studied. These data suggest a partial role of the C-terminal region in determining the binding specificity and the activity of peptides upon binding to their target cell membranes.

  • PDF

효모시스템에서 Human Transglutaminase C(TGase II)의 발현에 관한 연구 : C-말단부위의 결손효과

  • Woo, Sang-Kyu;Jung, Sun-Mi;Rhee, Sang-Ki;Ahn, Byeong-Yoon;Kim, Hee-Chul
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.290-298
    • /
    • 1996
  • In an effort to understand the role of the conserved domain and of the heterologous one-third part of the carboxy terminal domain of transglutaminase C (TGase II), attempts were made to express TGase II cDNA of human origin in yeast Saccharomyces cerevisiae as in a full-length form as well as in a form of C-terminal truncation. The 2$\mu$-based expression plasmids which contained the TGase II cDNA under the gal inducible promoter were introduced into yeast and the maintenance of the full-length and truncated form of the TGase II gene plasmids were confirmed by Southern blot. The expression of the TGase II gene was analysed by reverse transcription polymerase chain reaction (RT-PCR), and western blot analyses. As assayed by [1,4$^{14}$C]-putrescine incorporation into succinylated casein, the full-lenth as well as the truncated forms of recombinant TGase II showed some catalytic activity. These results indicate that the N-terminal homologous domain of human TGase II retains a catalytically active domain. The level of TGase II expressed in yeast, however, was far lower than satisfactory and other expression system should be sought further chracterization of the enzyme. The negative effect of TGase II on the growth of yeast is interesting with respect to the physiological effect of TGase II in cornification of epidermal keratinocytes.

  • PDF

Structural Investigation and Homology Modeling Studies of Native and Truncated Forms of $\alpha$-Amylases from Sclerotinia sclerotiorum

  • Ben Abdelmalek, Imen;Urdaci, Maria Camino;Ali, Mamdouh Ben;Denayrolles, Muriel;Chaignepain, Stephane;Limam, Ferid;Bejar, Samir;Marzouki, Mohamed Nejib
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1306-1318
    • /
    • 2009
  • The filamentous ascomycete Sclerotinia sclerotiorum is well known for its ability to produce a large variety of hydrolytic enzymes. Two $\alpha$-amylases ScAmy54 and ScAmy43 predicted to play an important role in starch degradation were showed to produce specific oligosaccharides essentially maltotriose that have a considerable commercial interest. Primary structure of the two enzymes was established by N-terminal sequencing, MALDI-TOF masse spectrometry and cDNA cloning. The two proteins have the same N-terminal catalytic domain and ScAmy43 derived from ScAmy54 by truncation of 96 amino acids at the carboxyl-terminal region. Data of genomic analysis suggested that the two enzymes originated from the same $\alpha$-amylase gene and that truncation of ScAmy54 to ScAmy43 occurred probably during S. sclerotiorum cultivation. The structural gene of Scamy54 consisted of 9 exons and 8 introns, containing a single 1,500-bp open reading frame encoding 499 amino acids including a signal peptide of 21 residues. ScAmy54 exhibited high amino acid homology with other liquefying fungal $\alpha$-amylases essentially in the four conserved regions and in the putative catalytic triad. A 3D structure model of ScAmy54 and ScAmy43 was built using the 3-D structure of 2guy from A. niger as template. ScAmy54 is composed by three domains A, B, and C, including the well-known $(\beta/\alpha)_8$ barrel motif in domain A, have a typical structure of $\alpha$-amylase family, whereas ScAmy43 contained only tow domains A and B is the first fungal $\alpha$-amylase described until now with the smallest catalytic domain.

The N-Terminal α-Helix Domain of Pseudomonas aeruginosa Lipoxygenase Is Required for Its Soluble Expression in Escherichia coli but Not for Catalysis

  • Lu, Xinyao;Wang, Guangsheng;Feng, Yue;Liu, Song;Zhou, Xiaoman;Du, Guocheng;Chen, Jian
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1701-1707
    • /
    • 2016
  • Lipoxygenase (LOX) is an industrial enzyme with wide applications in food and pharmaceutical industries. The available structure information indicates that eukaryotic LOXs consist of N terminus β-barrel and C terminus catalytic domains. However, the latest crystal structure of Pseudomonas aeruginosa LOX shows it is significantly different from those of eukaryotic LOXs, including the N-terminal helix domain. In this paper, the functions of this N-terminal helix domain in the soluble expression and catalysis of P. aeruginosa LOX were analyzed. Genetic truncation of this helix domain resulted in an insoluble P. aeruginosa LOX mutant. The active C-terminal domain was obtained by dispase digestion of the P. aeruginosa LOX derivative containing the genetically introduced dispase recognition sites. This functional C-terminal domain showed raised substrate affinity but reduced catalytic activity and thermostability. Crystal structure analyses demonstrate that the broken polar contacts connecting the two domains and the exposed hydrophobic substrate binding pocket may contribute to the insoluble expression of the C terminus domain and the changes in the enzyme properties. Our data suggest that the N terminus domain of P. aeruginosa LOX is required for its soluble expression in E. coli, which is different from that of the eukaryotic LOXs. Besides this, this N-terminal domain is not necessary for catalysis but shows positive effects on the enzyme properties. The results presented here provide new and valuable information on the functions of the N terminus helix domain of P. aeruginosa LOX and further improvement of its enzyme properties by molecular modification.

Investigations on Possible Roles of C-Terminal Propeptide of a Ca-Independent ${\alpha}$-Amylase from Bacillus

  • Salimi, Ali;Yousefi, Fatemeh;Ghollasi, Marzieh;Daneshjou, Sara;Tavoli, Hesam;Ghobadi, Sirous;Khajeh, Khosro
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1077-1083
    • /
    • 2012
  • Previously, an extracellular ${\alpha}$-amylase (BKA) had been purified from the culture of Bacillus sp. KR8104. Subsequently, the crystal structure of the active enzyme revealed a 422 amino acids polypeptide. In this study, the bka was cloned into E. coli, which encoded a polypeptide of 659 amino acids including two additional fragments: one 44 residues N-terminal fragment and another 193 residues C-terminal fragment. In order to investigate the role of the C-terminal fragment, two constructs with and without this region [$BKA{\Delta}$(N44) and $BKA{\Delta}$(N44C193)] were designed and expressed in E. coli BL21. The optimum pH, thermal stability, and the end-products of starch hydrolysis were found to be similar in both constructs. The $K_m$ and $V_{max}$ values for $BKA{\Delta}$(N44) were lower than $BKA{\Delta}$(N44C193), using either starch or ethylidene-blocked 4-nitrophenylmaltoheptaoside as a substrate.