• Title/Summary/Keyword: CCR5

Search Result 214, Processing Time 0.021 seconds

CCR5 Polymorphism as a Protective Factor for Hepatocellular Carcinoma in Hepatitis B Virus-Infected Iranian Patients

  • Abdolmohammadi, Reza;Azar, Saleh Shahbazi;Khosravi, Ayyoob;Shahbazi, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.10
    • /
    • pp.4643-4646
    • /
    • 2016
  • The CC chemokine receptor 5 (CCR5) delta 32 allele results in a nonfunctional form of the chemokine receptor and has been implicated in a variety of immune-mediated diseases. $CCR5{\Delta}32$ may also predispose one to chronic liver disease or be linked with resistance to HBV infection. This study was undertaken to investigate any association between CCR5 polymorphism with resistance to hepatitis B or susceptibility to HBV infection. A total of 812 Iranian individuals were enrolled into two groups: HBV infected cases (n=357), who were HBsAg-positive, and healthy controls (n=455). We assessed polymorphisms in the CCR5 gene using specific CCR5 oligonucleotide primers surrounding the breakpoint deletion. Genotype distributions of the HBV infected cases and healthy controls were determined and compared. The CCR5/CCR5 (WW) and $CCR5/CCR5{\Delta}32$ (W/D) genotypes were found in (98%) and (2%) of HBV infected cases, respectively. The $CCR5{\Delta}32/{\Delta}32$genotype was not found in HBV infected cases. Genotype distributions of CCR5 in healthy controls were W/W genotype in (87.3%), W/D genotype in (11.2%) and D/D genotype in (1.5%). Heterozygosity for $CCR5/CCR5{\Delta}32$ (W/D) in healthy controls was greater than in HBV infected cases (11.2% vs 2%, p < 0.001). W/D and D/D genotypes were more prominent in healthy controls than in HBV infected cases. This study provides evidence that the $CCR5{\Delta}32$ polymorphism may have a protective effect in resistance to HBV infection at least in the Iranian population.

Comparative Analysis of CCR2 and CCR5 Binding Sites to Facilitate the Development of Dual Antagonists: An in Silico Study

  • Kothandan, Gugan
    • Journal of Integrative Natural Science
    • /
    • v.5 no.1
    • /
    • pp.22-26
    • /
    • 2012
  • Chemokine receptor antagonists have potential applications in field of drug discovery. Although the chemokine receptors are G-protein-coupled receptors, their cognate ligands are small proteins (8 to 12 kDa), and so inhibiting the ligand/receptor interaction has been challenging. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, targeting both CCR2 and CCR5 could be a useful strategy. Because of the importance of these receptors, providing information regarding the binding site is of prime importance. Herein, we report the comparison of CCR2 of CCR5 binding sites both sequentially as well as structurally. We also urged the importance of crucial residues in the binding site, to facilitate the development of dual antagonists targeting both the receptors. These results could also be useful for the design of novel and potent dual CCR2 and CCR5 antagonists using structure based drug design.

No Association between the CCR5Δ32 Polymorphism and Sporadic Esophageal Cancer in Punjab, North-West India

  • Sambyal, Vasudha;Manjari, Mridu;Sudan, Meena;Uppal, Manjit Singh;Singh, Neeti Rajan;Singh, Harpreet;Guleria, Kamlesh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4291-4295
    • /
    • 2015
  • Background: Chemokines and their receptors influence carcinogenesis and cysteine-cysteine chemokine receptor 5 (CCR5) directs spread of cancer to other tissues. A 32 base pair deletion in the coding region of CCR5 that might alter the expression or function of the protein has been implicated in a variety of immune-mediated diseases. The action of antiviral drugs being proposed as adjuvant therapy in cancer is dependent on CCR5 wild type status. In the present study, distribution of CCR5${\Delta}32$ polymorphism was assessed in North Indian esophageal cancer patients to explore the potential of using chemokine receptors antagonists as adjuvant therapy. Materials and Methods: DNA samples of 175 sporadic esophageal cancer patients (69 males and 106 females) and 175 unrelated healthy control individuals (69 males and 106 females) were screened for the CCR5${\Delta}32$ polymorphism by direct polymerase chain reaction (PCR). Results: The frequencies of wild type homozygous (CCR5/CCR5), heterozygous (CCR5/${\Delta}32$) and homozygous mutant (${\Delta}32/{\Delta}32$) genotypes were 96.0 vs 97.72%, 4.0 vs 1.71% and 0 vs 0.57% in patients and controls respectively. There was no difference in the genotype and allele frequencies of CCR5${\Delta}32$ polymorphism in esophageal cancer patients and control group. Conclusions: The CCR5${\Delta}32$ polymorphism is not associated with esophageal cancer in North Indians. As the majority of patients express the wild type allele, there is potential of using antiviral drug therapy as adjuvant therapy.

In-silico Modeling of Chemokine Receptor CCR2 And CCR5 to Assist the Design of Effective and Selective Antagonists

  • Kothandan, Gugan;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.5 no.1
    • /
    • pp.32-37
    • /
    • 2012
  • Chemokine receptor antagonists have potential applications in field of drug discovery. Although the chemokine receptors are G-protein-coupled receptors, their cognate ligands are small proteins (8 to 12 kDa), and so inhibiting the ligand/receptor interaction has been challenging. The application of structure-based in-silico methods to drug discovery is still considered a major challenge, especially when the x-ray structure of the target protein is unknown. Such is the case with human CCR2 and CCR5, the most important members of the chemokine receptor family and also a potential drug target. Herein, we review the success stories of combined receptor modeling/mutagenesis approach to probe the allosteric nature of chemokine receptor binding by small molecule antagonists for CCR2 and CCR5 using Rhodopsin as template. We also urged the importance of recently available ${\beta}2$-andrenergic receptor as an alternate template to guide mutagenesis. The results demonstrate the usefulness and robustness of in-silico 3D models. These models could also be useful for the design of novel and potent CCR2 and CCR5 antagonists using structure based drug design.

CCR5 deficiency in aged mice causes a decrease in bone mass

  • Oh, Eun-Ji;Zang, Yaran;Kim, Jung-Woo;Lee, Mi Nam;Song, Ju Han;Oh, Sin-Hye;Kwon, Seung Hee;Yang, Jin-Woo;Koh, Jeong-Tae
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.173-181
    • /
    • 2019
  • The CC chemokine receptor 5 (CCR5) is a G protein-coupled receptor that regulates chemotaxis and effector functions of immune cells. It also serves as the major co-receptor for the entry of human immunodeficiency virus (HIV). Recently, CCR5 inhibitors have been developed and used for the treatment or prevention of HIV infections. Additionally, it has been identified that CCR5 controls bone homeostasis by regulating osteoclastogenesis and the communication between osteoblasts and osteoclasts. However, the effects of CCR5 inhibition on bone tissue in elderly patients are unknown. This study aimed to examine the bone phenotype of aged CCR5 knockout (KO) mice. Femoral and tibial bones were isolated from 12-month and 18-month old wild-type (WT) and CCR5 KO mice, and microcomputed tomography and histology analyses were performed. Twelve-month-old CCR5 KO mice exhibited a decreased trabecular bone mass and cortical bone thickness in both femoral and tibial bones compared with age-matched WT mice. Eighteen-month-old mice also showed a decreased trabecular bone mass in femurs compared with control WT mice, but not in tibial bones. Unlike in 12-month-old mice, the cortical margin of femurs and tibias in 18-month-old mice were rough, likely because they were aggravated by the deficiency of CCR5. Overall, our data suggest that the deficiency of CCR5 with aging can cause severe bone loss. When CCR5 inhibitors or CCR5 inactivating technologies are used in elderly patients, a preventive strategy for bone loss should be considered.

CCR : Tree-pattern based Code-clone Detector (CCR : 트리패턴 기반의 코드클론 탐지기)

  • Lee, Hyo-Sub;Do, Kyung-Goo
    • Journal of Software Assessment and Valuation
    • /
    • v.8 no.2
    • /
    • pp.13-27
    • /
    • 2012
  • This paper presents a tree-pattern based code-clone detector as CCR(Code Clone Ransacker) that finds all clusterd dulpicate pattern by comparing all pair of subtrees in the programs. The pattern included in its entirely in another pattern is ignored since only the largest duplicate patterns are interesed. Evaluation of CCR is high precision and recall. The previous tree-pattern based code-clone detectors are known to have good precision and recall because of comparing program structure. CCR is still high precision and the maximum 5 times higher recall than Asta and about 1.9 times than CloneDigger. The tool also include the majority of Bellon's reference corpus.

Design and Development of Framework for Wireless Data Broadcast of XML-based CCR Documents (XML 기반 CCR 문서의 무선 데이터 방송을 위한 프레임워크의 설계와 구현)

  • Im, Seokjin;Hwang, Hee-Joung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.169-175
    • /
    • 2015
  • In the field of health informatics converging ICT technology and medicine technology, XML-based CCR document make sure the continuity and mobility of the information of patients. When a number of clients access CCR documents, wireless data broadcast that supports any number of clients can be an alternative for the scalability. In this paper, we propose a framework for wireless data broadcast of XML-based CCR documents. We design and implement the framework that can adopt various data scheduling algorithms and indexing schemes for the optimized performances of clients. The implemented framework shows the efficiency with simulations adopting various data scheduling algorithms and indexing schemes.

High Frequencies of the CCR2b-64I and SDF1-3'A Mutations with HIV Infection in Koreans

  • Choi, Byeong-Sun;Cha, Seung-Hun;Kim, Sung Soon;Park, Yong-Keun;Lee, Joo-Shil
    • IMMUNE NETWORK
    • /
    • v.2 no.2
    • /
    • pp.86-90
    • /
    • 2002
  • Background: Host genetic polymorphisms in the HIV-1 co-receptor CCR5 and CCR2b and SDF-1, ligand for co-receptor CXCR4, have been known to be associated with the resistance of HIV infection and/or the delayed disease progression in HIV-infected patients. Methods: We examined the frequencies of SDF1-3'A and CCR2b-64I alleles of 354 Koreans including 100 HIV-uninfected persons, 13 discordant spouses of HIV-infected persons, and 241 HIV-infected persons. The genotyping assays of SDF1 and CCR2b genes were carried out by polymerase chain reaction-restriction fragment length polymorphism. Results: The frequencies of CCR2b-64I and SDF1-3'A alleles in Koreans were very high compared with Caucasians and blacks. Observed frequencies of CCR2b-64I and SDF1-3'A allelic variants were 25.1% and 28.7%, respectively. The frequency of the CCR2b-64I allele in Koreans was 2~4 times higher than those of other ethnic groups with the exception of Asian. The frequencies of CCR2b-64I and SDF1-3'A genotypes did not show the significant difference between HIV-infected and uninfected Koreans. However, the prevalence of CCR2b-64I genotype of the LTNP group was about two times higher than that of the remainder group (P< 0.05). Four (45%) out of 9 LTNPs (long-term nonprogressors) showed having the SDF1-3'A allele and 7 (78%) out of 9 LTNPs carried the CCR2b-64I allele. 3 (33%) out of 9 LTNPs had both SDF1-3'A and CCR2b-64I alleles. But none of 5 RPs (rapid progressors) appeared to have both SDF1-3'A and CCR2b-64I alleles. Conclusion: The different genetic backgrounds in study populations may affect the disease progression and the AIDS epidemic in each country. Further studies need to define whether high frequencies of CCR2b-64I and SDF1-3'A allelic variants may affect the HIV disease progression.

The House Dust Mite Allergen, Dermatophagoides pteronyssinus Suppresses the Chemotactic Activity of Human Monocytes

  • Lee, Ji-Sook;Yang, Eun Ju;Kim, In Sik
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.435-437
    • /
    • 2012
  • House dust mite (HDM) is important in the pathogenesis of allergic diseases including asthma and atopic dermatitis. Dermatophagoides pteronissinus (Dp) is one of major HDM allergens. In this study, we investigated that Dp extract (DpE) affects on the chemotactic activity of monocytes isolated from the peripheral blood. DpE inhibited the migration of human monocytes in response to CC chemokines such as MIP-$1{\alpha}$, RANTES, HCC-4, MCP-1, and TARC. DpE did not alter the expression of CC chemokine receptors (CCRs) such as CCR1, CCR2, CCR3, CCR4, and CCR5. These results indicate that DpE blocks the chemotaxis of human monocytes and its mechanism is not involved in alteration of CCR expression. Better understanding of the effect of DpE on monocytes will enable elucidation of the role of Dp in the development of allergic diseases.

Homology Modeling of CCR 4: Novel Therapeutic Target and Preferential Maker for Th2 Cells

  • Shalini, M.;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.7 no.4
    • /
    • pp.234-240
    • /
    • 2014
  • C-C chemokine receptor type 4 (CCR4) is a chemokine receptor with seven transmembrane helices and it belongs to the GPCR family. It plays an important role in asthma, lung disease, atopic dermatitis, allergic bronchopulmonary aspergillosis, cancer, inflammatory bowel disease, the mosquito-borne tropical diseases, such as dengue fever and allergic rhinitis. Because of its role in wide spectrum of disease processes, CCR4 is considered to be an important drug target. Three dimensional structure of the protein is essential to determine the functions. In the present study homology modeling of human CCR4 was performed based on crystal structure of CCR5 chemokine receptor. The generated models were validated using various parameters. Among the generated homology models the best one is selected based on validation result. The model can be used for performing further docking studies to identifying the critical interacting residues.