• Title/Summary/Keyword: CCVT

Search Result 11, Processing Time 0.032 seconds

Compensation of the Secondary Voltage of a Coupling Capacitor Voltage Transformer (CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Lee, Ji-Hoon;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.909-914
    • /
    • 2008
  • A coupling capacitor voltage transformer(CCVT) is used in an extra or ultra high voltage system to obtain the standard low voltage signal for protection. To avoid the phase angle error between the primary and secondary voltages, a tuning reactor is connected between a capacitor and a voltage transformer. The inductance of the reactor is designed based on the power system frequency. If a fault occurs on the power system, the secondary voltage of the CCVT contains some errors due to a dc offset component and harmonic components resulting from the fault. The errors become severe in the case of a close-in fault. This paper proposes an algorithm for compensating the secondary voltage of a CCVT in the time-domain. From the measured secondary voltage of the CCVT, the secondary and primary currents are obtained; then the voltage across the capacitor and the inductor is calculated and then added to the measured secondary voltage to obtain the correct primary voltage. Test results indicate that the proposed algorithm can compensate the distorted secondary voltage of the CCVT irrespective of the fault distance, the fault inception angle, and the burden of the CCVT.

Compensation of the secondary voltage of a three winding coupling capacitor voltage transformer (3권선 CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Kim, Yeon-Hee;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.18-20
    • /
    • 2007
  • A coupling capacitor voltage transformer (CCVT) is used in an extra high voltage power system to obtain the standard low voltage signal for protection and measurement. To suppress the effects of ferro-resonance more effectively, a three winding CCVT is used. This paper proposes an algorithm for compensating the secondary voltage of the three winding CCVT. With the secondary voltage of the three winding CCVT, the secondary and tertiary currents are obtained; the primary winding current is obtained by considering non-linear characteristics of the core; the voltage across the capacitor and the inductor are calculated and then added to the measured voltage to compensate the secondary voltage. Test results indicate that the algorithm can reduce the errors of the three winding CCVT significantly.

  • PDF

Compensation of the Secondary Voltage of a Three Winding Coupling Capacitor Voltage Transformer (3권선 CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Kim, Yeon-Hee;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.938-943
    • /
    • 2008
  • Coupling capacitor voltage transformers(CCVTs) have been used in extra or ultra high voltage systems to obtain the standard low voltage signal for protection and measurement. For fast suppression of the phenomenon of ferroresonance, three winding CCVTs are used instead of two winding CCVTs. A tuning reactor is connected between a capacitor voltage divider and a voltage transformer to reduce the phase angle difference between the primary and secondary voltages in the steady state. Slight distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has significant errors due to the transient components such as dc offset component and/or high frequency components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of a three winding CCVT in the time domain. With the values of the measured secondary voltage of the three winding CCVT, the secondary, tertiary and primary currents and voltages are estimated; then the voltages across the capacitor and the tuning reactor are calculated and then added to the measured voltage. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the three winding CCVT irrespective of the fault distance, the fault impedance and the fault inception angle as well as in the steady state.

Analysis of the response of a distance relay considering the errors of CT and CCVT (CT와 CCVT의 오차를 고려한 거리 계전기의 응동 분석)

  • Kang, Yong-Cheol;Zhang, Tai-Ying;Choi, Jae-Sun;Kang, Hae-Gweon;Kim, Kwang-Moo;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.12-15
    • /
    • 2008
  • A distance relay has been widely used for transmission line protection. The distance relay detects a fault based on the calculated impedance i.e. the ratio of the voltage to the current measured from a current transformer (CT) and a coupling capacitor voltage transformer (CCVT), respectively. When a fault occurs and a CT saturates due to the magnitude of fault current, dc component, primary time constant, and the remanent flux of the iron core, the secondary current of a CT is distorted On the other hand, non-fundamental components generated during a fault can increase the error of a CCVT, particularly when a fault distance is short. The distortion of the current and voltage can cause mal-operation or the operating time delay of a distance relay. This paper describes the response of a distance relay considering the errors of a CT and a CCVT. The results indicate that the severe distortion of a CT and a CCVT have noticeable effect to a distance relay.

  • PDF

Compensation Algorithm of CCVT's Secondary Voltages (CCVT 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Lee, Byung-Eun;Jin, Enshu;Zheng, Taiying;Lee, Ji-Hoon;So, Soon-Hong;Cha, Sun-Hee;Kim, Yeon-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.93-95
    • /
    • 2005
  • Coupling capacitor voltage transformers (CCVT) are widely used in high voltage power systems to obtain standard low voltage signal for protective relaying and measuring instruments. To obtain high accuracy, capacitances and inductances are tuned to the power system frequency, making a parallel resonant circuit. When no fault occurs, no distortion of the secondary voltage is generated. However, when a fault occurs, harmonics generated break the resonance between capacitances and inductance, which generates the distortion of the secondary voltage. This paper proposes an algorithm for compensating the secondary voltage of the CCVT. With the values of the secondary voltage of the CCVT, the secondary currents, the primary currents and the voltages across the capacitors and inductor are calculated. Test results indicate that the proposed algorithm can compensate the distorted secondary voltage of the CCVT, and is irrespective of the fault distance, the fault inception angle and the burden.

  • PDF

Compensation of the secondary voltage of a coupling capacitor voltage transformer in the time-domain (히스테리시스 특성을 고려한 CCVT 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Kim, Yeon-Hee;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.266-267
    • /
    • 2006
  • A coupling capacitor voltage transformer (CCVT) is used in extra high voltage and ultra high voltage transmission systems to obtain the standard low voltage signal for protection and measurement. To obtain the high accuracy at the power system frequency, a tuning reactor is connected between a capacitor and a voltage transformer (VT). Thus, no distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has some errors due to the transient components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of the CCVT in the time domain. With the values of the secondary voltage of the CCVT, the secondary and the primary currents are obtained; then the voltage across the capacitor and the tuning reactoris calculated and then added to the measured secondary voltage. The proposed algorithm includes the effect of the non-linear characteristic of the VT and the influence of the ferro-resonance suppression circuit. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the CCVT irrespective of the fault distance, the fault inception angle and the fault impedance.

  • PDF

Compensation Algorithm for the Secondary Voltage of a Coupling Capacitor Voltage Transformer by Considering the Hysteresis Characteristics of the Core (코어의 히스테리시스 특성을 고려한 CCVT 2차 전압 보상 알고리즘)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Kang, Hae-Gweon;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1457-1462
    • /
    • 2009
  • This paper proposes a compensating algorithm for the secondary voltage of a coupling capacitor voltage transformer (CCVT) in the time domain by considering the hysteresis characteristics of the core. The proposed algorithm estimates the three error terms i.e. the voltage across the secondary winding parameters, the voltage across the primary winding parameters, and the voltage across the capacitor and the tuning reactor. These three terms are added to the measured secondary voltage to obtain the correct voltage. The algorithm reduces the errors of the CCVT significantly both in the steady state and during a fault. The performance of the algorithm is verified under the various fault conditions by varying the fault distance, the fault inception angle, and the fault impedance with the EMTP generated data. Test results clearly indicate that the algorithm can increase the accuracy of a CCVT significantly under the fault conditions as well as in the steady state. The algorithm helps improve the performance of a protection relay or a metering device.

Compensating algorithm of the secondary voltage for CCVT considering the hysteresis of a iron core (철심의 히스테리시스 특성을 고려한 CCVT 2차 전압 보상방법)

  • Kang, Y.C.;Lee, B.E.;Zheng, T.Y.;Lee, J.H.;Kim, Y.H.;Park, J.M.;So, S.H.;Jang, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.261-263
    • /
    • 2005
  • In the extra and ultra high voltage system, the coupling capacitor voltage transformer (CCVT) measures the primary voltage with a small scale of voltage transformer (VT). However, the CCVT generates errors caused by the hysteresis characteristics of iron core and by the ferroresonance, inevitably. This paper proposes a compensation algorithm for the secondary voltage of a CCVT considering the hysteresis characteristics of an iron core. The proposed algorithm calculates the seconda교 current of a VT by summing the current flowing the ferroresonance circuit and the burden current; it estimates the secondary voltage of a VT; then the core flux is calculated by integrating of the secondary voltage of a VT, then estimates the exciting current using ${\lambda}-i$ characteristic of the core. The method calculates a primary voltage of a VT considering the estimated primary current. Finally, the correct voltage is estimated by compensating the voltage across the inductor and capacitor. The performance of the proposed algorithm was tested in a 345kV transmission system. The test results show that the proposed method can improve the accuracy of the seconda교 voltage of a CCVT.

  • PDF

A Study on the Application of Voltage Transformer at Transmission Lines (송전선로측 권선형 변성기 사용에 따른 기술적 고찰)

  • Choi, Ky-Youl;Park, Moon-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1152-1154
    • /
    • 1999
  • Recently. due to the drastic development of communication method between substations for pilot protective relaying system. The power line carrier(PLC) application is getting obsolete. Consequently, the coupling capacitor voltage transformer (CCVT) loses its necessity for the carrier coupling function, and so wound voltage transformer(VT) can be used to substitute CCVT for voltage signal. However, VT has been reported to give rise to ferro-resonance phenomena, so sufficient consideration on applying the VT to line side is required. This study introduces probable technical problems in using the VT on T/L side, and carries out feasibility study on the basis of modeling results by EMTP(Electro-magnetic transient program)

  • PDF

전기측정표준에 관한 미국 및 호주에서의 연구동향

  • Chung, Won
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.21-29
    • /
    • 1977
  • 우리의 일상생활과 공업생산에 있어서 에너지활용의 중간형태로서 뿐아니라 information전달이나 sensor 또는 transducer signal의 검출.증폭과 제어신호수단으로서 전기가 차지하는 중요한 위치는 재언할 필요가 없다. 이러한 전기적량을 정확하게 측정하고 그 정밀도를 향상시키기 위한 연구가 세계각국의 표준연구기관에서 꾸준히 계속되고 있다. 작년가을 미국 NBS에서의 각종회의와 호주에서 열린 IMEKO Colloquium에 참석하고 관련연구기관들을 방문하는 기회에 거기에서 얻은 견문중에서 최근 활발하게 논의되고 있는 ze/h volt standard, solid state WHM, CCVT, inductive voltage divider와 전기기기의 QA절차등의 화제를 중심으로 이 두나라에서의 전기측정표준에 관한 연구현황을 소개하고저 한다.

  • PDF