• Title/Summary/Keyword: CFD

Search Result 5,692, Processing Time 0.03 seconds

파워 효과를 고려한 스마트 무인기의 공력해석

  • Kim, Cheol-Wan;Chung, Jin-Deog
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • To validate the rotor performance analysis, 3D Computational Fluid Dynamics(CFD) analysis was performed for tilt rotor aeroacoustic model(TRAM). Also, 3D vehicle with rotating rotors was simulated for rotor power effect analysis. Multiple reference frame(MRF) and sliding mesh techniques were implemented to capture the effect of rotor revolution. CFD results were compared with the wind tunnel test results to validate their accuracy. At helicopter mode, CFD analysis predicted lower thrust than the wind tunnel test but CFD results showed good agreement with the test result at cruise mode. Rotor power effect decreased the lift but did not change drag and pitching moment.

  • PDF

AERODYNAMIC AND NOISE CALCULATIONS OF HELICOPTER ROTOR BLADES USING LOOSE CFD-CSD COUPLING METHODOLOGY (CFD-CSD 연계 기법을 이용한 로터 블레이드 공력 및 소음 해석)

  • Kang, H.J.;Kim, D.H.;Wie, S.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.62-68
    • /
    • 2014
  • The aerodynamic and noise calculations were performed through the CFD-CSD loose coupling methodology. In the loose coupling process, the trimmed rotor airloads were predicted by the in-house CFD code based on unstructured overset meshes, and the trim of the rotorcraft and the aeroelastic deformation of rotor blades were accounted with the CAMRAD II rotorcraft comprehensive code. The set of codes was used to analyze the HART-II baseline test condition. The effect of grid resolution and time step was examined and the loose coupling approach was found to be stable and convergent for the case. Comparison of the resulting sectional airloads, structural deformations, the noise carpets and the wake geometry with experimentally measured data was presented and showed the good agreement.

Development and application of Auto-Wind program for automated analysis of wind resource (풍력자원해석 자동화 프로그램 Auto-Wind 개발과 응용)

  • Yoon, Seong-Wook;Jeon, Wan-Ho;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.191-191
    • /
    • 2010
  • As many researchers want to predict or assess more about wind condition and wind power generation, CFD(Computational Fluid Dynamics) analysis method is very good way to do predict or assess wind condition and power generation. But CFD analysis is needed much knowledge of aerodynamics and physical fluid theory. In this paper, Auto-Wind CFD analysis program will be introduced. User does not need specific knowledge of CFD or fluid theory. This program just needs topographical data and wind data for initial condition. Then all of process is running automatically without any order of user. And this program gives for user to select and set initial condition for advanced solving CFD. At the last procedure of solving, Auto-Wind program shows analysis of topography and wind condition of target area. Moreover, Auto-Wind can predict wind power generation with calculation in the program. This Auto-Wind analysis program will be good tool for many wind power researchers in real field.

  • PDF

Reliability of numerical computation of pedestrian-level wind environment around a row of tall buildings

  • Lam, K.M.;To, A.P.
    • Wind and Structures
    • /
    • v.9 no.6
    • /
    • pp.473-492
    • /
    • 2006
  • This paper presents numerical results of pedestrian-level wind environment around the base of a row of tall buildings by CFD. Four configurations of building arrangement are computed including a single square tall building. Computed results of pedestrian-level wind flow patterns and wind speeds are compared to previous wind tunnel measurement data to enable an assessment of CFD predictions. The CFD model uses the finite-volume method with RNG $k-{\varepsilon}$ model for turbulence closure. It is found that the numerical results can reproduce key features of pedestrian-level wind environment such as corner streams around corners of upwind building, sheltered zones behind buildings and channeled high-speed flow through a building gap. However, there are some differences between CFD results and wind tunnel data in the wind speed distribution and locations of highest wind speeds inside the corner streams. In locations of high ground-level wind speeds, CFD values match wind tunnel data within ${\pm}10%$.

Inlet Shape Design of Air Handling Unit Using Commercial CFD Code (상용 CFD코드를 이용한 공조기 입구 형상 설계)

  • Choi, Young-Seok;Ju, Jong-Il;Lee, Yong-Kab;Joo, Won-Gu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.54-59
    • /
    • 2002
  • A commercial CFD code is used to compute the 3-D viscous flow field within the inlet flow concentrator of the newly developed AHU (Air Handling Unit). To improve the performance of the AHU, the inlet air needs to be gradually accelerated to the fan's annular velocity without causing turbulence or flow separation. Three major geometric parameters were selected to specify the inlet shape of the AHU. The performance of the AHU could be measured by the inlet and outlet flow uniformity and the total pressure loss through the inlet flow concentrator. Several numerical calculations were carried out to determine the influence of the geometric parameters on the performance of the AHU. The best geometric values were decided to have efficient inlet shape with analyzing CFD calculation results.

A Study on CFD Data Compression Using Hybrid Supercompact Wavelets

  • Hyungmin Kang;Lee, Dongho;Lee, Dohyung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1784-1792
    • /
    • 2003
  • A hybrid method with supercompact multiwavelets is suggested as an efficient and practical method to compress CFD dataset. Supercompact multiwavelets provide various advantages such as compact support and orthogonality in CFD data compression. The compactness is a crucial condition for approximated representation of CFD data to avoid unnecessary interaction between remotely spaced data across various singularities such as shock and vortices. But the supercompact multiwavelet method has to fit the CFD grid size to a product of integer and power of two, m${\times}$2$^n$. To resolve this problem, the hybrid method with combination of 3, 2 and 1 dimensional version of wavelets is studied. With the hybrid method, any arbitrary size can be handled without any shrinkage or expansion of the original problem. The presented method allows high data compression ratio for fluid simulation data. Several numerical tests substantiate large data compression ratios for flow field simulation successfully.

Metacomputing System on Grid Computing for Executing CFD Programs (CFD 프로그램 수행을 위한 그리드 컴퓨팅 기반의 메타컴퓨팅 시스템)

  • Lee, Gun-Woo;Woo, Gyun;Kang, Kyung-Woo;Kwon, Oh-Kyoung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.463-467
    • /
    • 2007
  • CFD(Computational Fluid Dynamics)는 수치 기법(Numerical)과 알고리즘을 사용하여 유체 유동 문제를 풀고 해석하는 것이다. 본 논문에서는 이러한 CFD 분석 프로그램의 효율적인 수행을 위해 분산 환경을 기반으로 하는 메타컴퓨팅(Metacomputing) 시스템에 대해서 기술한다. 실제 CFD 프로그램을 단일 클러스터 시스템에서 수행시켰을 때와 메타컴퓨팅 시스템을 이용하여 수행시켰을 때 소요되는 시간과 결과 파일을 실험을 통하여 비교한다. 그 결과 메타컴퓨팅 시스템을 이용하여 CFD 분석 프로그램을 분산 수행시킨 경우는 그렇지 않은 경우에 소요되는 시간보다 평균 $15.3{\sim}38.5%$ 정도 빨랐고, 동일한 결과를 얻을 수 있음을 확인하였다.

  • PDF

Prediction of Non-Contact-Type Seal Leakage Using CFD (CFD를 사용한 터보기계 비접촉식 실의 누설량 예측)

  • Ha Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.3 s.36
    • /
    • pp.14-21
    • /
    • 2006
  • Leakage reduction through annular type seals of turbomachinery is necessary for enhancing their efficiency and the precise prediction method of seal leakage is needed. The analysis based on Bulk-flow concept has been mainly used in predicting seal leakage. However, full Navier-Stokes Equations with turbulent model derived in the seal flow passage have to be solved for improving the prediction of seal leakage. FLUENT 6 which is commercial CFD(Computational Fluid Dynamics) code based on FVM(Finite Volume Method) and SIMPLE algorism has been used to analyze leakage of various non-contact-type seals in this presentation. Comparing with the results of Bulk-flow model analysis and experiment, the result of CFD analysis shows good agreement with that of existing theoretical analysis for the incompressible grooved seal and compressive plain and staggered seal. The CFD analysis also shows improvement on the leakage prediction of the incompressible plain seal and compressive see-through-type labyrinth seal.

CFD Analysis for Thermal Mixing in a Subcooled Water during Steam Jet Discharge (증기제트 방출시 과냉각수조 내의 열혼합 현상 CFD 해석)

  • Kang, Hyung-Seok;Song, Chul-Hwa
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.513-514
    • /
    • 2006
  • A CFD analysis for a thermal mixing experiment during steam jet discharge was performed to develop the analysis methodology for the thermal mixing between steam and subcooled water and to find the optimized numerical method. In the CFD analysis, the steam condensation phenomena by a direct contact was modelled by the so-called condensation region model. The comparison of the CFD results with the test data showed a good agreement as a whole, but a small temperature difference was locally found at some locations. However, the commercial CFD code of CFX4.4 together with the condensation region model can simulate the thermal mixing behaviour reasonably well when a sufficient number of mesh distribution and a proper numerical method are adopted

  • PDF

Loose Coupling Approach of CFD with a Free-Wake Panel Method for Rotorcraft Applications

  • Lee, Jae-Won;Oh, Se-Jong;Yee, Kwan-Jung;Kim, Sang-Hun;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • As a first step toward a complete CFD-CSD coupling for helicopter rotor load analysis, the present study attempts to loosely couple a CFD code with a source-double panel method. The far-field wake effects were calculated by a time-marching free vortex wake method and were implemented into the CFD module via field velocity approach. Unlike the lifting line method, the air loads correction process is not trivial for the source-doublet panel method. The air loads correction process between the source-doublet method and CFD is newly suggested in this work and the computation results are validated against available data for well-known hovering flight conditions.