• Title/Summary/Keyword: CFD modeling

Search Result 377, Processing Time 0.027 seconds

Understanding Coal Gasification and Combustion Modeling in General Purpose CFD Code (범용 CFD 코드에서 석탄 가스화 및 연소 모델링에 관한 이해)

  • Lee, Hoo-Kyung;Choi, Sang-Min;Kim, Bong-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.15-24
    • /
    • 2010
  • The purpose of this study is to assess approaches to modeling coal gasification and combustion in general purpose CFD codes. Coal gasification and combustion involve complex multiphase flows and chemical reactions with strong influences of turbulence and radiation. CFD codes would treat coal particles as a discrete phase and gas species are considered as a continuous phase. An approach to modeling coal reaction in $FLUENT^{(R)}$, selected in this study as a typical commercial CFD code, was evaluated including its devolatilization, gas phase reactions, and char oxidation, turbulence, and radiation submodels. CFD studies in the literature were reviewed to show the uncertainties and limitations of the results. Therefore, the CFD analysis gives useful information, but the results should be carefully interpreted based on understandings on the uncertainties associated with the modelings of coal gasification and combustion.

Safety Evaluation of Tunnel Fire by CFD Modeling (터널화재의 CFD Modeling에 의한 안전성 평가방법)

  • Lee, Chang Wook;Lee, Keun Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.84-84
    • /
    • 2011
  • 터널화재의 위험요소에 대한 해석을 위해서는 실제 상황을 재현한 실대형 실험이 가장 유용하겠지만 현실적으로 시간적, 공간적, 경제적인 제약이 따르기 때문에 CFD Modeling 기술의 이용 및 검증이 필요하고, 실제 상황에 가까운 현상의 재현을 위해서는 시뮬레이션의 정확도에 대한 향상이 필수적이다. 또한, CFD Modeling을 터널화재에 적용할 때 시뮬레이션의 질에 영향을 미칠 수 있는 요소들에 대한 결정이 선행되어야 한다. 우선, 터널의 기하학적 구조와 경계조건의 확립이 필요한데 필요한 정보를 얻기 위해서 어느정도 길이의 터널이 적절한지에 대해 생각할 필요가 있으며, 단면변화에 대한 결정을 통해 모델링을 수행하여야 한다. 모델링 작업이 선행된 후에 화재의 위치, 성장률, 최대 크기, 환기시스템 사항 등의 고려가 필요한데 이러한 조건들은 CFD Modeling의 결과에 직접적인 영향을 주기 때문에 충분한 사전조사가 이루어져야 하고, 각 사항들의 변수를 고려하여 다양한 화재시나리오의 도출이 가능할 수 있다. 마지막으로, 화재에서 발생된 열중 약 30%가 복사에 의해 주위 벽으로 전달될 수 있고 열은 연기가 가득찬 영역내에서 재분배될 수 있는데, 열전달 및 연기의 유동 등에 관한 자료를 기초로 화재현상에 대한 분석이 가능하다. 이러한 과정들을 통해 실제 상황에 가까운 설계화재 시나리오를 예측할 수 있다. 본 연구에서는 우리나라 최장대터널인 죽령터널에 대해 합리적인 가정을 통한 설계화재 시나리오를 기초로 화재시뮬레이션은 FDS(Fire Dynamics Simulator) 프로그램을 사용하여 화재 및 연기의 이동 양상을 분석하고, 피난시뮬레이션은 SIMULEX 프로그램을 사용하여 피난시간을 예측 함으로써 터널화재의 CFD Modeling에 의한 피난안전성을 검토하고자 한다.

  • PDF

Analysis of conventional drag and lift models for multiphase CFD modeling of blood flow

  • Yilmaz, Fuat;Gundogdu, Mehmet Yasar
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.161-173
    • /
    • 2009
  • This study analyzes especially drag and lift models recently developed for fluid-solid, fluid-fluid or liquid-liquid two-phase flows to understand their applicability on the computational fluid dynamics, CFD modeling of pulsatile blood flow. Virtual mass effect and the effect of red blood cells, RBCs aggregation on CFD modeling of blood flow are also shortly reviewed to recognize future tendencies in this field. Recent studies on two-phase flows are found as very useful to develop more powerful drag-lift models that reflect the effects of blood cell's shape, deformation, concentration, and aggregation.

CFD MODELING VEGETATED CHANNEL FLOWS: A STATE-OF-THE-ART REVIEW

  • Choi Sung-Uk;Yang Won-Jun
    • Water Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.101-112
    • /
    • 2005
  • This paper presents the state of the art of the CFD applications to vegetated open-channel flows. First, important aspects of the physics of vegetated flows found through the laboratory experiments are briefly reviewed. Then, previous CFD applications to one-dimensional vertical structure, partly-vegetated flows, compound open-channel flows with floodplain vegetation, and fully three-dimensional numerical simulations are reviewed. Finally, topics for further researches such as relationship between the resistance and flexural rigidity, additional drag due to foliages, and melting the experience of CFD with the depth-averaged modeling, are suggested.

  • PDF

The Application of CFD for Ship Design (선박설계를 위한 계산유체역학의 활용)

  • Kim Wu-Joan;Van Suak-Ho
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.42-48
    • /
    • 2003
  • The issues associated with the application of CFD for ship design are addressed. Doubtlessly at the moment, CFD tools are very useful in evaluating hull forms prior to traditional towing tank tests. However, time-consuming pre-processing is an obstacle in the daily application of CFD tools to improve hull forms. The accuracy of computational modeling without sacrificing the usability of CFD system is also to be assessed. The wave generation is still predicted by using potential panel methods, while velocity profiles entering into propeller plane is solved using turbulent flow solvers. The choice of turbulence model is a key to predict nominal wake distribution within acceptable accuracy. The experimental data for CFD validation are invaluable to improve physical and numerical modeling. Other applications of CFD for ship design than hull form improvement are also given. It is certain that CFD can be a cost-effective tool for the design of new and better ships.

The Application of CED for Ship Design (선박설계를 위한 계산유체역학의 활용에 대하여)

  • Kim Wu-Joan
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.5-8
    • /
    • 2002
  • The issues associated with the application of CFD for ship design are addressed. It is quite certain that the CFD tools are very useful in evaluating hull forms a prior to traditional towing tank tests. However, the time-consuming pre-processing is an obstacle in the daily application of CFD tools to improve hull forms. The accuracy of computational modeling without sacrificing the usability of CFD system is also to be assessed. The wave generation is still predicted by using potential panel methods, while velocity profiles entering into propeller plane is solved using turbulent flow solvers. The choice of turbulence model is a key to predict nominal wake distribution within acceptable accuracy. The experimental data for CFD validation are invaluable to improve physical and numerical modeling. Other applications of CFD for ship design than hull form improvement are also given. It is certain that CFD can be a cost-effective tool for the design of new and better ships.

  • PDF

Wind flow simulations in idealized and real built environments with models of various level of complexity

  • Abdi, Daniel S.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.503-524
    • /
    • 2016
  • The suitability of Computational Fluid Dynamics (CFD) simulations on the built environment for the purpose of estimating average roughness characteristics and for studying wind flow patterns within the environment is assessed. Urban models of various levels of complexity are considered including an empty domain, array of obstacles arranged in regular and staggered manners, in-homogeneous roughness with multiple patches, a semi-idealized built environment, and finally a real built environment. For each of the test cases, we conducted CFD simulations using RANS turbulence closure and validated the results against appropriate methods: existing empirical formulas for the homogeneous roughness case, empirical wind speed models for the in-homogeneous roughness case, and wind tunnel tests for the semi-idealized built environment case. In general, results obtained from the CFD simulations show good agreement with the corresponding validation methods, thereby, giving further evidence to the suitability of CFD simulations for built environment studies consisting of wide-ranging roughness. This work also provides a comprehensive overview of roughness modeling in CFD-from the simplest approach of modeling roughness implicitly through wall functions to the most elaborate approach of modeling roughness explicitly for the sake of accurate wind flow simulations within the built environment.

A Study on the Modeling Method of Missile Fin Aerodynamic Coefficient using Wind Tunnel Test and CFD (풍동시험과 CFD 해석 결과를 반영한 유도무기 조종날개 공력계수 모델링 기법 연구)

  • Yim, Kyung Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.360-368
    • /
    • 2019
  • A study on aerodynamic modeling was performed to predict the hinge moments required for initial design of missile. Fin aerodynamic coefficients were modeled using the equivalent angle of attack method based on the wind tunnel test. In addition, CFD analysis was performed to calculate the dynamic pressure around the body and improve the accuracy of aerodynamic coefficients. The aerodynamic coefficient accuracy was verified by comparisons of the coefficient acquired from wind tunnel test and prediction of flow conditions, not involved in the model built-up. It was confirmed that fin aerodynamic coefficients can be predicted effectively by using the proposed method.

Conventional Fluid Dynamics and CFD Modeling for the Systematic Analysis of the Inside Flow of the Fischer-Tropsch Packed Bed Reactor (전통적인 유체역학 방법론과 CFD 결합을 통한 Fischer-Tropsch 고정층 반응기 내부 흐름의 체계적 모델링)

  • Kim, Hyunseung;Cho, Jaehoon;Hong, Gi Hoon;Moon, Dong Ju;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.65-77
    • /
    • 2016
  • Modeling for complex reacting flow in Fischer-Tropsch reactor is one of the challenges in the field of Computational Fluid Dynamics (CFD). It is hard to derive each and every reaction rate for all chemical species because Fisher-Tropsch reaction produces many kinds of hydrocarbons which include lots of isomers. To overcome this problem, after analyzing the existing methodologies for reaction rate modeling, non-Anderson-Schulz-Flory methodology is selected to model the detailed reaction rates. In addition, the inside flow has feature of multi-phase flow, and the methodologies for modeling multi-phase flow depend on the interference between the phases, distribution of the dispersed phase, flow pattern, etc. However, existing studies have used a variety of inside flow modeling methodologies with no basis or rationale for the feasibility. Modeling inside flow based on the experimental observation of the flow would be the best way, however, with limited resources we infer the probable regime of inside flow based on conventional fluid dynamics theory; select the appropriate methodology of Mixture model; and perform systematic CFD modeling. The model presented in this study is validated through comparisons between experimental data and simulation results for 10 experimental conditions.

PREDICTION OF THERMAL STRATIFICATION IN A U-BENT PIPE: A URANS VALIDATION

  • Pellegrini, M.;Endo, H.;Ninokata, H.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.33-42
    • /
    • 2012
  • In the present study, CFD is employed to investigate phenomena occurring during a process of thermal stratification in U-bent pipes at transitional Reynolds number. URANS evaluation had been chosen for its low computational costs during transient analysis and for the evaluation of modeling performance in these conditions. Application of CFD at transitional Reynolds number and buoyancy driven flows indeed contains deeper uncertainties in relation to the range of applicability for hydrodynamic and thermal models. The methodology applied in the work points out, through validations with the basic problems constituting the complex stratified phenomenon, the applicability of the current turbulence modeling. Accurate predictions have been found in relation to transitional Reynolds number in bent pipes and region of stability induced by the gravitational field. On the other hand the defects introduced in the unstable region of the U bent pipe, are discussed in relation to the adopted modeling.